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Abstract

During the last ten years the lattice Boltzmann equation (LBE) method has been developed as an al-

ternative numerical approach in computational fluid dynamics (CFD). Originated from the discrete kinetic

theory, the LBE method has emerged with the promise to become a superior modeling platform, both

computationally and conceptually, compared to the existing arsenal of the continuum-based CFD methods.

The LBE method has been applied for simulation of various kinds of fluid flows under different conditions.

The number of papers on the LBE method and its applications continues to grow rapidly, especially in the
direction of complex and multiphase media.

The purpose of the present paper is to provide a comprehensive, self-contained and consistent tutorial on

the LBE method, aiming to clarify misunderstandings and eliminate some confusion that seems to persist in

the LBE-related CFD literature. The focus is placed on the fundamental principles of the LBE approach.

An excursion into the history, physical background and details of the theory and numerical implementation

is made. Special attention is paid to advantages and limitations of the method, and its perspectives to be a

useful framework for description of complex flows and interfacial (and multiphase) phenomena. The

computational performance of the LBE method is examined, comparing it to other CFD methods, which
directly solve for the transport equations of the macroscopic variables.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

From its birth over 10 years ago (1988), the lattice Boltzmann equation (LBE) method has been
aggressively pursued and at a pace that is strongly accelerating in the past few years. The method
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has found application in different areas of computational fluid dynamics (CFD), including sim-
ulation of flows in porous media; non-ideal, binary and ternary complex fluids; microfluidics;
particulate and suspension flows; to name but a few (see for review Rothman and Zaleski, 1997;
Chen and Doolen, 1998). Proponents of the LBE method consider the method to possess po-
tentials to become a versatile CFD platform that is superior over the existing, continuum-based
CFD methods. At the same time, since the method, and its variants and extensions, are still being
formulated and improved, the diverse and growing body of the LBE literature suffers from
controversy and lack of distillation. In our opinion, the situation has become unhealthy and
actually caused unnecessary confusion. In addition, overstatement of the method capabilities
formed a ground for criticism. We feel a strong need for clarification and a consistent presentation
of the LBE methodology, its technology, terminology and features on a basis that eventually
eliminates further misunderstandings and misusage of the method. More importantly, we feel that
a fair and careful assessment of the LBE method features would help those who enter the field to
develop a realistic view about the method�s capabilities and limitations.
With this in mind, we organize this paper as a comprehensive tutorial. It starts from the dis-

cussion of the fundamental principles and origin of the approach (Section 2), which includes short
introduction of the kinetic theory of gases and its connection to the LBE method. Next, practical
implementation of the LBE algorithms is discussed in Section 3. Hydrodynamic models of the
LBE method are then introduced in much greater details in Section 4, where an assessment of the
models is also provided. Special attention is paid to the capability and limitations of the LBE
models to simulate fluid–fluid multiphase flows and fluid–fluid interfaces. Section 5 presents a
Chapman–Enskog analysis of the discrete Boltzmann equation; and derivation and discussion of
the hydrodynamic equations for three most commonly used LBE models. Section 6 provides a
comparative analysis of the method in terms of simplicity and efficiency of algorithms, and po-
tentials for effective parallelization. The paper concludes with a summary about the method
applicability and perspectives.

2. Origin and basic idea of the lattice Boltzmann equation method

2.1. Boltzmann equation and kinetic theory of gases

The purpose of this section is to outline the most important facts and results of the kinetic
theory which are relevant to the LBE method. More exhaustive overview of the kinetic theory and
recent important developments can be found in Chapman and Cowling (1970), Huang (1963),
Koga (1970), Liboff (1969), Cercignani (1969), Harris (1971), Klimontovich (1990) and Cohen
(1997).

Kinetic theory. The lattice Boltzmann equation method originates from the kinetic theory of
gases. The primary variable of interest is a one-particle probability distribution function (PPDF),
f ðr; e; tÞ, so defined that ½f ðr; e; tÞ � d3r � d3e� is the number of particles which, at time t, are located
within a phase-space control element ½d3r � d3e� about r and e (r is a particle�s coordinate in
physical space and e is a particle�s velocity). The transport equation for the PPDF can be ex-
pressed as (Huang, 1963):
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ð@t þ e � rr þ a � reÞf ðr; e; tÞ ¼ ð@tf Þcoll ð1Þ
where a is the external force acting on the particle.

Boltzmann equation. To derive the Boltzmann equation from Eq. (1), the collision term ð@tf Þcoll
has to be explicitly specified. Two major assumptions were made (Huang, 1963): (a) only binary
collisions are taken into account. This is valid if the gas is sufficiently dilute (ideal gas). (b) The
velocity of a molecule is uncorrelated with its position. 1 The last assumption is known as the
assumption of molecular chaos. Importantly, without this assumption, the collision operator
ð@tf Þcoll would not be expressible in terms of f itself. Instead, it would involve a two-particle
probability distribution function. In general case, Eq. (1) can be replaced by a set of N coupled
equations to account for multi-particle interactions (BBGKY equations).
Under the assumptions made, Boltzmann (1872) expressed the collision term of Eq. (1) as 2

(Chapman and Cowling, 1970; Huang, 1963; Koga, 1970):

ð@tf Þcoll ¼
Z

dX
Z

d3eð0ÞrðXÞ e
�� 	 eð0Þ

�� f 0f 0ð0Þ�
	 ff ð0Þ

�
ð2Þ

where X is the scattering angle of the binary collision fe0; e0ð0Þg ! fe; eð0Þg with fixed e; f and f 0

denote the PPDF before and after collision; and rðXÞ is the differential cross-section of this
collision (Huang, 1963).

Boltzmann’s ‘H theorem’. Introducing the functional H as the complete integral defined by the
equation

H ¼
Z
f ln f de ð3Þ

the Boltzmann �H theorem� states that if the PPDF, f , satisfies the Boltzmann transport equation
(1) and (2), then H is a non-increasing in time function, dHðtÞ=dt6 0. This is the analog of the
second law of thermodynamics, if we identify H with the negative of the entropy per unit volume
divided by Boltzmann�s constant, H ¼ 	S=VkB. Thus, the �H theorem� states that, for a fixed
volume V , the entropy never decreases (Boltzmann, 1872; Huang, 1963).

Collision interval theory. The collision integral, Eq. (2), can be significantly simplified for near-
equilibrium states. The collision interval theory states that during time interval dt a fraction
dt=s ¼ 1=sH of the particles in a given small volume undergoes collisions, which alter the PPDF
from f to the equilibrium value given by the Maxwellian:

f eq ¼ q

ð2pRT ÞD0=2
exp

"
	 ðe	 uÞ2

2RT

#
ð4Þ

1 In fact, two other assumptions were also made: (c) wall effects are ignored and (d) the effect of the external force on

the collision cross-section is neglected.
2 Boltzmann�s derivation of the collision integral, Eq. (2), was, even though intuitive, deeply insightful. There is a gap

between Newton�s equations of motion of the molecules constituting a gas and the Boltzmann equation (2).

Nevertheless, this equation is known to be valid, and it has been successfully applied to study transport properties of

dilute gases (Koga, 1970). A more general BBGKY theory (due to Bogoliubov, 1946; Kirkwood, 1947; and Grad, 1949)

was developed to provide a consistent derivation of the Boltzmann equation.
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where D0, R, T , q and u are the dimension of space, gas constant, temperature, macroscopic
density and velocity, respectively. Thus, the collision term can be expressed in the form known as
the ‘BGK collision operator’ (Bhatnagar et al., 1954; Chapman and Cowling, 1970):

ð@tf Þcoll ¼ 	 f 	 f eq
s

¼ 	 f 	 f eq
dtsH

ð5Þ

where s is a relaxation time.3;4 The Boltzmann equation with the BGK collision operator has the
following form:

@tf þ e � rrf þ a � ref ¼ 	 f 	 f
eq

s
ð6Þ

Simplification of the forcing term. In order to evaluate the forcing term, the derivative ref has
to be explicitly given. The following assumption is made (He et al., 1998):

ref � ref eq ð7Þ

which is due to the fact that f eq is the leading part of the distribution function f (�an assumption
of small deviation from the equilibrium�). By combining the Maxwellian Eq. (4) with Eqs. (6) and
(7), the following equation is obtained:

dtf þ e � rrf ¼ 	 f 	 f eq
s

þ a � ðe	 uÞ
RT

f eq ð8Þ

Link to hydrodynamics. Connection of the Boltzmann equation to the hydrodynamics is ac-
complished through the integration in the particle momentum space:

q ¼
Z

½f �de; qu ¼
Z

½f � e�de; qE ¼ 1

2

Z
½f � ðe	 u2Þ�de

q ¼
Z

½f eq�de; qu ¼
Z

½f eq � e�de; qE ¼ 1

2

Z
½f eq � ðe	 u2Þ�de

ð9Þ

with the kinetic energy E given by

E ¼ D0

2
kBT ¼ D0

2

RT
NA

ð10Þ

where NA and kB are the Avogadro�s (or Loschmidt�s (Chapman and Cowling, 1970)) number and
the Boltzmann constant, respectively.D0 is the number of degrees of freedom of a particle (D0 ¼ 3
and 5 for monoatomic and diatomic gases, respectively).

3 The BGK equation (5) is a phenomenological equation (Liboff, 1969). This characteristic pre-determines the domain

of the equation�s applicability: dilute gases in a state close to thermal equilibrium. The inaccuracy of the BGK equation

is enhanced when one treats the equation by the Chapman–Enskog method (Koga, 1970).
4 The �H theorem� remains valid for the BGK equation (Koga, 1970).
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2.2. Lattice Boltzmann equation

2.2.1. Heuristic approach
Historically, the �classical� LB equation has been developed empirically, with basic idea bor-

rowed from the cellular automata fluids (Frisch et al., 1986; Wolfram, 1986). The physical space
of interest is filled with regular lattice populated by discrete particles. Particles �jump� from one
site of the lattice to another with discrete particle velocities ea (a ¼ 0; . . . ; b, where b is the total
number of possible molecule�s directions), and colliding with each other at the lattice nodes,
Fig. 1a and b. The lattice geometry (a set of possible particle velocities) should obey certain
symmetry requirements (see Appendix A), which are compelling in order to recover the rotational
invariance of the momentum flux tensor at the macroscopic level (Wolfram, 1986).
In effect, the LBE method corresponds to the following formal discretization in the phase space

of the Boltzmann equation:

ðaÞ f ! fa
ðbÞ e! ea

ðcÞ f eq ! f eqa ¼ Aa þ Baeaiui þ Cau2 þ Daeaieajuiuj
ð11Þ

where the discrete equilibrium distribution function, also called ‘‘the Chapman–Enskog expan-
sion’’, is inspired by the following constant temperature and small velocity (low-Mach number)
approximation of the Maxwellian Eq. (4)

f eq �
q exp 	 e2

2RT

h i
ð2pRT ÞD0=2

� 1

(
þ ðe � uÞ

RT
þ ðe � uÞ2

2ðRT Þ2
	 u2

2RT

)
þ Oðu3Þ ð12Þ

Thus, the lattice Boltzmann BGK equation is heuristically postulated as 5

@tfa þ eaj@jfa|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Advection operator; AðfaÞ

¼ 	 fa 	 f
eq
a

s
þ
ajðeaj 	 uiÞ

RT
f eqa|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Collision operator; XðfaÞ

ð13Þ

As a next step, one can define the ‘‘LBE sound speed’’ as (He and Luo, 1997c)

cs �
ffiffiffiffiffiffiffi
RT

p
ð14Þ

5 We have limited our study to the BGK LBE models, which are currently in the mainstream of the LBE technology.

There are several non-BGK LBE models available in the literature. McNamara et al. pursue an approach with multi-

particle collision operator (McNamara and Alder, 1993; McNamara et al., 1995,1997). Similar approach is utilized by

Eggels (1996) and Eggels and Somers (1995). Another recent development of the non-BGK LBE is due to Lallemand

and Luo (2000). While being more sophisticated both conceptually and technically, these models are believed to be

more stable and more flexible in implementation of variable fluid properties.
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Remark 1. At this point, a principal departure from the actual kinetic theory must be emphasized.

• According to the kinetic theory (Chapman and Cowling, 1970), the speed of sound is related to the temperature as

cs ¼
ffiffiffiffiffiffiffiffiffi
cRT

p
ð15Þ

where c ¼ cp=cv ¼ 1þ ð2=D0Þ is a ratio of specific heats. The definition Eq. (14) means that the LBEs pseudo-

molecules must have infinite number of degrees of freedom, D0 ¼ 1, which, of course, does not make any physical

sense.

• As we show further below (Section 3.3), if the fluid being modeled is to retain its speed of sound, the solution of Eq.

(13) is impossible for all practical purposes. As a consequence, compressibility effects are outside the realm of the

LBE method; cs is retained, however, with a totally different meaning and role––that of a pseudo-compressibility

parameter that allows the solution to relax to the appropriate incompressible viscous solution.

Rather than ‘‘sound speed’’, let us call, therefore, cs by the name ‘‘pseudo-sound-speed’’ (PSS). Furthermore, as a
consequence, the relaxation time and related molecular mean free path and velocity also change their meaning and

they would be called as ‘‘lattice relaxation time’’, ‘‘lattice mean free path’’ and ‘‘lattice velocity’’, respectively. While

this departs from the normal usage, adoption of these terms, we believe, will clear up an enormous conceptual barrier

for the newcomers and uninitiated.

The coefficients Aa, Ba, Ca and Da of the �Chapman–Enskog� expansion for f eqa , Eq. (11), are
�tuned� to recover mass, momentum conservation and viscous stress tensor during the multiscale
Chapman–Enskog perturbative expansion procedure. 6

Eq. (13) are the coupled system of Hamilton–Jacobi equations,with Hamiltonian eaj , @jfa, and
the �coupling� source term given by the collision operator. This system can be solved by any
appropriate numerical scheme (see Section 3).

Fig. 1. Lattice geometry and velocity vectors of the (a) two-dimensional nine-speed D2Q9 model and (b) three-

dimensional fifteen-speed D3Q15 model.

6 In the case of the �thermal� LBE, it is also required to conserve energy, which would entail addition of the expansion
terms in the Taylor series Eqs. (11) and (12).
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2.2.2. Consistent discretization

Recent studies by He and Luo (1997b, 1997c) pioneer another way to establish the LBE
methodology. In particular, He and Luo (1997c) demonstrated that the lattice Boltzmann
equation can be viewed as a special finite-difference approximation of the Boltzmann equation.
The chief idea and motivation are to provide a sound theoretical foundation for a transition from
the �continuous� Boltzmann equation to the LBE, which involves the choice of the discrete particle
velocities (structure of the lattice) and the choice of the coefficients of expansion for equilibrium
distribution function, Eq. (11). There are two major ingredients in the procedure by He and Luo,
discussed below.
Time discretization. Eq. (6) is integrated over a time step dt:

f ðrþ e � dt; e; t þ dtÞ 	 f ðr; e; tÞ ¼ 	
Z tþdt

t

f 	 f eq
s

dt þ
Z tþdt

t

a � ðe	 uÞ
RT

f eq ð16Þ

The first integral in the collision operator is treated explicitly, using the first-order approximation,
while the second one can be treated using the trapezoidal implicit scheme (He et al., 1998), which,
in order to regain the explicitness of the method, entails the following variable transformation:

h ¼ f 	 a � ðe	 uÞ
2RT

f eqdt ð17Þ

Thus, the first-order time discretization yields the following Boltzmann equation:

hðrþ e � dt; e; t þ dtÞ 	 hðr; e; tÞ ¼ 	 hðr; e; tÞ 	 h
eqðr; e; tÞ

s

where heq ¼ 1

�
	 a � ðe	 uÞ

2c2s
dt

�
f eq

ð18Þ

Note, that the speed of sound is defined by Eq. (14).
Phase space discretization. This step establishes the structure of the lattice and the form of the

equilibrium distribution function. To derive a ‘‘consistent’’ LBE scheme, the integration in mo-
mentum space Eq. (9) has to be approximated by the following quadrature (He and Luo, 1997c):Z

wðeÞf eqðr; e; tÞde �
X
a

WawðeaÞf eqa ðr; ea; tÞ ð19Þ

where wðeÞ ¼ ½1; ei; ðeiejÞ; ðeiejekÞ; . . .� and Wa are the polynomials of e and the �weight� coefficient
of the quadrature, respectively. Eq. (19) corresponds to the following �link� of the LBE to hy-
drodynamics: 7

7 In the case of the transformation Eq. (17), f is substituted by h, and the first momentum is modified as

qu	 1

2
qadt ¼

Z
½h � e�de; qu	 1

2
qadt ¼

Z
½heq � e�de: ð20Þ
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q ¼
X
a

fa; qu ¼
X
a

fa � ea; qE ¼ 1

2

X
a

fa � ðea 	 uÞ2

q ¼
X
a

f eqa ; qu ¼
X
a

f eqa � ea; qE ¼ 1

2

X
a

f eqa � ðea 	 uÞ2
ð21Þ

where

faðr; tÞ � Waf ðr; ea; tÞ; f eqa ðr; tÞ � Waf eqðr; ea; tÞ ð22Þ

Now, a task is to properly specify the abscissas of the quadrature Eq. (19), or, in other words,
the �structure� (�symmetry�) of the lattice. To do that, one must impose a set of constraints for this
�structure�. These constraints are formulated based on the Chapman–Enskog procedure to �link�
the Boltzmann equation to the Navier–Stokes equations, see Section 5.1, which involves the
following moments of the equilibrium distribution function:

Mass conservation : wðeÞ ¼ 1; ei; and eiej
Momentum conservation : wðeÞ ¼ 1; ei; eiej; and eiejek
Energy conservation : wðeÞ ¼ 1; ei; eiej; eiejek; and eiejekel

ð23Þ

Thus, the basic idea is that with the chosen abscissas of the quadrature Eq. (19), the moments of
f eqa , Eq. (23), should be calculated exactly. With this, the Chapman–Enskog procedure is intact,
and it is argued that the framework of the LBE can rest on that of the Boltzmann equation, and
the rigorous results of the Boltzmann equation can be extended to the LBE via this explicit
connection (He and Luo, 1997b).

Remark 2. It is instructive to note that the Maxwell–Boltzmann equilibrium distribution function f eq is an exact so-

lution of the Chapman–Enskog zero-order approximation of the Boltzmann equation (Huang, 1963). In finding the

abscissas of the quadrature Eq. (19), however, instead of the exact Maxwellian, its constant-temperature and low-

Mach-number approximation Eq. (12) is utilized (He and Luo, 1997c), with which no rigorous link to the Navier–

Stokes equations is available. Moreover, this is exactly the reason why the Boltzmann�s ‘‘H theorem’’ does not hold for

the LBE. Therefore, this procedure does not provide a substitute for the Chapman–Enskog multiscale perturbative

expansion procedure (see Section 5.1).

The details of the procedure to find the required abscissas of the quadrature and corresponding
approximations of the Maxwellian are given in He and Luo (1997c) for two-dimensional 6-, 7-
and 9-bit and three-dimensional 27-bit lattice models. It is important to note that with this
procedure, the �weighting� coefficients for the �composing� sublattices and the coefficients of the
equilibrium distribution function are exactly the same as those of the �heuristic� LBE, summarized
in Appendices A and B, providing that 8 c2s ¼ � ð4Þ=� ð2Þ (He, 2001).

8 In the �heuristic� LBE models, the lattice symmetry parameters � ð4Þ and � ð2Þ are adjustable, with free parameter w0,

allowing to vary the pseudo-sound-speed. For D2Q9, the requirement c2s ¼ � ð4Þ=� ð2Þ is satisfied with w0 ¼ 4=9.
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2.2.3. Non-dimensional form

To cast the discrete Boltzmann equation (13) into the non-dimensional form, one must in-
troduce the following characteristic scales: 9

Characteristic length scale L
Characteristic velocity U0

Reference density qr

Lattice mean free path k

ð24Þ

Using these scales, the variables utilized in the LBE theory are non-dimensionalized as

Non-dimensional variables:

PPDF f̂fa ¼ fa
qr

Lattice velocity êeai ¼
eai
U0

Time t̂t ¼ tU0

L
Length r̂r ¼ r

L
Density q̂q ¼ q

qr
Macroscopic velocity ûui ¼ ui

U0

Pseudo-sound-speed ĉcs ¼ cs
U0

Body force âaj ¼ ajL
U2
0

¼ ij
Fr

Kinematic viscosity m̂m ¼ m
U0L

¼ 1
Re

ð25Þ

where i is a unit-vector, specifying the direction of the body forces.
To make a non-dimensional relaxation time, we will use the lattice Knudsen number defined as

a ratio of the lattice mean free path k to the flow characteristic length scale L:

e ¼ k
L

ð26Þ

Defining the ‘‘collision time’’ as tc ¼ k=U0, the dimensionless relaxation time is

ŝs ¼ s
tc
¼ sU0

k
¼ U0

em
ð27Þ

where the scaling ‘‘lattice-molecular velocity’’ is defined as em ¼ k=s.
With this dimensionalization introduced, the discrete Boltzmann equation (13) is transformed

into the following non-dimensional equation:

@t̂t f̂fa þ êeaj@jf̂fa ¼ 	 f̂fa 	 f̂f
eq
a

eŝs
þ
âaj � ðêeaj 	 ûujÞ

ĉc2s
f̂f eqa ð28Þ

For the most of the paper, for compactness, the hat ð̂ð�Þ is omitted; and, unless explicitly specified,
all variables are assumed to be non-dimensional.

9 As explained in Remark 1, we add the �prefix� ‘‘lattice’’, emphasizing the artificial nature of the LBEs ‘‘pseudo-

molecules’’; and, correspondingly, of the LBEs mean free path, sound speed, etc.
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3. Numerical implementation of the LBE method

In the present section, we will describe the basic numerical algorithms for solution of the LBE
equation (28). We will start with the ‘‘stream-and-collide’’ algorithm (Section 3.1), which is uti-
lized in most LBE simulations. Then, in Section 3.2, several other algorithms are described, which
have been found useful to overcome stability problems, attributed to the ‘‘stream-and-collide
scheme’’.

3.1. Basic ‘‘stream-and-collide’’ algorithm

Eq. (28) is a system of (bþ 1) one-dimensional 10 PDE Hamilton–Jacobi equations for scalars
# ¼ fa ða ¼ 0; . . . ; bÞ, consisting of an ‘‘advection part’’, Að#Þ, and a ‘‘collision part’’, Xð#Þ:

o#

ot
þ d

dt

o#

oX|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Að#Þ

¼ Xð#Þ
dt

ð29Þ

where dð¼ daÞ is a step of space discretization in X ð¼ xaÞ-direction; and the collision operator is
Xð#Þ � 	ðfa 	 f eqa Þ=sH.
The simplest scheme for discretization of each of these equations involves a first-order accurate

implicit forward differencing for the advection part,

Að#Þ ¼ #
ðnþ1Þ
i 	 #

ðnÞ
i

dt
þ d

dt

#
ðnþ1Þ
iþ1 	 #

ðnþ1Þ
i

d

and a first-order-accurate explicit Euler discretization for the collision part, XðnÞ
a (Sterling and

Chen, 1996). This results in the ‘‘basic’’ two-step ‘‘stream-and-collide’’ LBE algorithm 11 (see
Algorithm 1).

Algorithm 1. Stream-and-collide algorithm

Collision:

• Calculate flow macroscopic conserved variables using Eq. (21).

• Determine equilibrium distribution functions, using Eqs. (B.2)–(B.10).

• Compute �ready-to-advect� distribution functions for each lattice direction, at each site:

f �
a ðx; tÞ ¼ faðx; tÞ þ Xaðx; tÞ; a ¼ 0; . . . ; b ð30Þ

• Depending on the boundary conditions, the r.h.s. of Eq. (30) is modified for boundary nodes.

Advection:

• Particle populations are streamed in the direction of corresponding discrete velocities, towards the neighbor lattice

nodes.

faðxþ e0dt; t þ dtÞ ¼ f �
a ðx; tÞ; a ¼ 0; . . . ; b ð31Þ

10 Note, for each ath-equation, the axis X ¼ xa of the coordinate system is ‘‘pointing’’ in the direction of the vector

ea.
11 It is instructive to note that with chosen notation faðxþ e0dt; t þ dtÞ ¼ #

ðnþ1Þ
iþ1 .
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3.2. Advanced numerical schemes

3.2.1. Numerical discretization of the advection operator
Let us consider general three-point finite-difference formula for discretization of Eq. (29), at

point i in ‘‘ath’’ direction of the particle�s motion: 12

#nþ1i ¼ ai#
}
i	1 þ bi#

}
i þ ci#

}
iþ1 þ X}

i ð32Þ

The upper indices denote the level of implicity: } ¼ n (explicit), } ¼ nþ 1=2 (semi-implicit), and
} ¼ nþ 1 (implicit). Eq. (32) can be written in the following ‘‘conservative’’ form (Oran and
Boris, 1987):

#nþ1i ¼ #ni 	 1
2
CFLiþ1=2ð#}

iþ1
�

þ #}
i Þ 	 CFLi	1=2ð#}

i þ #}
i	1Þ
�

þ mðn:d:Þiþ1=2

h
	 ð#}

iþ1=2 	 #}
i Þ 	 mðn:d:Þi	1=2ð#}

i 	 #}
i	1Þ
i
þ X}

i ð33Þ

where mðn:d:Þi�1=2 are the dimensionless coefficients of numerical diffusion, and

ai � mðn:d:Þi	1=2 þ 1
2
CFLi	1=2

bi � 1	 1
2
CFLiþ1=2 þ 1

2
CFLi	1=2 	 mðn:d:Þiþ1=2 	 mðn:d:Þi	1=2

ci � mðn:d:Þiþ1=2 	 1
2
CFLiþ1=2

ð34Þ

Application of Eqs. (32)–(34) to the �stream-and-collide� Eqs. (30) and (31) gives mðn:d:Þ ¼ 1=2
(Sterling and Chen, 1996). This numerical diffusion can be compensated for by modifying the
relaxation parameter from sH to (sH 	 1=2).
For the ‘‘stream-and-collide’’ scheme, the ‘‘Courant, Friedrichs, and Lewy’’ number for ad-

vection is CFL ¼ eadt=Dxa. This condition CFL ¼ 1 is quite restrictive, especially in the case of the
strong non-linearity of the collision operator. 13 The following �predictor–corrector� algorithm has
been introduced in Nourgaliev et al. (2002), allowing to overcome this problem.

Algorithm 2. Multifractional stepping procedure (MFN)

• In this scheme, a time step from n to nþ 1 is divided into 2N sub-steps.

• The downwind/upwind difference are employed for an advection term, at each odd/even sub-step:

#
ð2mþ1Þ
i ¼ #

ð2mÞ
i þ #

ð2mÞ
i 	 #

ð2mÞ
iþ1

2N
þ X}

i

2N

#
ð2mþ2Þ
i ¼ #

ð2mþ1Þ
i þ #

ð2mþ1Þ
i	1 	 #

ð2mþ1Þ
i

2N
þ X}

i

2N

m ¼ 0; . . . ; ðN	 1Þ

ð35Þ

With this scheme, the CFL number can be varied arbitrarily, CFL ¼ 1
2N
. ForN ¼ 1, this scheme

is identical to the explicit MacCormack scheme (Oran and Boris, 1987). Furthermore, for each
couple of sub-steps, the central differencing is applied in both time and space, rendering thus the

12 It is instructive to note that, in the present section, ‘‘i’’ is a point of the finite-difference discretization of Eq. (29),

discretized in the ath-direction.
13 For example, in the case of the complex fluids (Section 4).
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second-order accuracy. Applying Eqs. (32)–(34), the sub-step coefficient of the numerical diffusion
is mðn:d:Þ ¼ 	 1

4N
for odd sub-steps, and mðn:d:Þ ¼ þ 1

4N
for even sub-steps. Thus, the resulting coeffi-

cient of the numerical diffusion is zero.
Other algorithms for discretization of the LBEs advection operator were also proposed to help

alleviating a stability problem in the LBE numerical treatment, see Teng et al. (2000) (‘‘TVD/AC’’
scheme) and McNamara et al. (1995) (‘‘Lax-Wendroff’’ scheme). The stability problem is even
more acute in the simulation of multiphase and thermal flows (Nourgaliev et al., 2002; Teng et al.,
2000; McNamara et al., 1995).

3.2.2. Numerical discretization of the collision operator

The �stream-and-collide� LBE numerical scheme employs the explicit Euler method for the
collision operator. In the case of x ¼ 1=sH ! 2, and in the case of the strong non-linearity of the
collision operator, this scheme fails to produce stable solutions (Sterling and Chen, 1996; No-
urgaliev et al., 2002). Notice, that the LBE equations (29)

AðfaÞ
x

� Dxfa ¼ K|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} � f eqa 	 fa
dt

ð36Þ

are stiff differential equations in x : fa � e�x. This means, that an error would grow exponentially.
Several numerical schemes were developed for the solution of stiff differential equations (see for

review Oran and Boris, 1987). For example, the first- and the second-order explicit Runge–Kutta
methods can be used to reduce the error growth (Nourgaliev et al., 2002). It is instructive to note
that the Runge–Kutta schemes do not guarantee stability for the stiff equations. To address this
problem, Nourgaliev et al. developed an implicit trapezoidal method (IT) (Nourgaliev et al., 2002)
(Algorithm 3).

Algorithm 3. Implicit Trapezoidal method (IT)

Collision:
U Kðm¼0Þ ¼ Kn (Euler);

U Beginning of the iteration loop, m ¼ mþ 1:

• ‘‘Predict’’ collision term: KðmÞ ¼ KnþKðm	1Þ

2
.

• Relaxation (optional): KðmÞ ¼ r �KðmÞ þ ð1	 rÞ �Kðm	1Þ; r is a relaxation parameter.

• Advection: A½f na ! f ðmÞa �. Obtain new f ðmÞa .

• Calculate new macroscopic variables: ½ui; q; Pij�ðmÞ ¼ MðmÞ½f ðmÞ
a � (Pij is a pressure tensor, Section 5).

• Calculate new equilibrium distribution function fH;ðmÞ
a from ½ui; q; Pij�ðmÞ.

• Determine new collision operator: KðmÞ ¼ fH;ðmÞ
a 	f ðmÞa

dt
.

• Perform convergence test: KðmÞ	Kðm	1Þ

qðmÞ

��� ���6 ec; ec is a �target� accuracy.

• Repeat iteration loop until the convergence condition is satisfied.

Advection:
• Employ one of the advection numerical schemes, A½f na ! f nþ1a � ¼ xK}, discussed in Section 3.2.1.

Stability of the IT algorithm is achieved by means of an iterative formulation of the collision
operator

Dxfa ¼
Kn þKnþ1

2
ð37Þ
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This scheme is second-order accurate, Oðx2Þ. Also, from the Von Neumann linear stability
analysis, it can be shown that IT scheme is A-stable (absolute stability in the entire left half-plane
(Oran and Boris, 1987)). However, the IT scheme is iterative. The iterations converge rapidly,
especially when the �MFN� scheme is employed for an advection. In addition, the convergence rate
increases with the increase of the number of sub-steps N (Nourgaliev et al., 2002). This feature is
of importance for simulations of high-surface-tension and high-density-ratio non-ideal fluids
(Nourgaliev et al., 2002).

3.3. Remarks on the LBE numerical implementation

3.3.1. Time step and lattice size
In the LBE simulations, the dimensionless relaxation parameter (see Eq. (5)):

sH � eŝs
dt

¼ s
dt

ð38Þ

is typically in the range 1=2 < sH < 3, where the lower limit is dictated by the consideration of the
numerical stability of the scheme. As it will be seen later in Section 5.2, the kinematic viscosity
is 14

m ¼ sHdtc2s ; or m ¼ sH 	 1

2

� �
dtc2s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

\steam-and-collide"

ð39Þ

From Eq. (39), it is seen that in order to model fluid with specific kinematic viscosity (say, water or
air) for a chosen spatial discretization dx and relaxation parameter sH, one has to fix a time step of
the LBE simulation. For example, in the case of the D2Q9 ‘‘stream-and-collide’’ scheme with
w0 ¼ 4=9, time step is

dt ¼
ðsH 	 1

2
Þd2x

3m
; d̂dt ¼

ðsH 	 1
2
Þd̂d2xRe

3
ð40Þ

Setting the range of the kinematic viscosity from 10	7 m2=s (water) to 10	3 m2=s (highly viscous
oils), simulation using the space resolution dx ¼ 1 mm and relaxation parameter ðsH 	 1=2Þ � 1
would require the following range of time step: dt varying from ð1=3Þ � 10 to ð1=3Þ � 10	3 s. It is
interesting to compare these estimates with the ‘‘viscous’’ CFL (‘‘Courant–Friedrichs–Levy’’)
limit of the explicit schemes of the ‘‘continuum’’ CFD, dt ¼ CFLvisðd2x=mÞ � CFLvis ð10–10	3Þ s.
From this, one can make the following observations. First, the ‘‘viscous CFL number’’ of the LBE
is

CFL
ðLBEÞ
vis ¼ sH

�
	 1

2

�
c2s
c2

¼
sH 	 1

2

3

����
D2Q9

14 In the case of the ‘‘stream-and-collide’’ scheme (see Section 3.1), there is a numerical-diffusion-related viscosity

coefficient absorbed into m by modifying sH ! ðsH 	 1=2Þ. This coefficient is due to the first-order accuracy of the

advection operator with the expansion Eq. (62) (Sterling and Chen, 1996).
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Next, for sH > 3:5, the D2Q9 LBE method allows to utilize larger time step than the one admis-
sable for explicit ‘‘continuum CFD’’ schemes, CFL

ðLBEÞ
vis > 1. However, for small relaxation pa-

rameter, sH ! 1=2, time step of the LBE becomes too small, CFLvis � 1. As seen from Eq. (40), in
order to increase the Re number for a chosen discretization d̂dx and d̂dt, one needs to decrease the
relaxation time sH ! 1=2. This causes two problems. First, the dimensional time step dt decreases
according to Eq. (40); and, second, the ‘‘stream-and-collide’’ LBE BGK schemes become un-
stable 15 when sH � 1=2 (Sterling and Chen, 1996). An alternative approach to increase the Re
number (while keeping sufficiently large dt and sH within the stability range), is to decrease the
non-dimensional lattice step d̂dx � 1=N by increasing the number of computational nodes N. This
makes the LBE simulations of high-Re-number flows computationally expensive.

3.3.2. Requirements for acoustics
Simulation of compressible fluid flows using the isothermal LBGK model is not practical. To

adequately represent the sound speed in air (csjT¼300 K ¼
ffiffiffiffiffiffiffiffiffi
cRT

p
� 300 m/s and mair � 10	5 m2/s),

considered as an ideal gas, a time step dt ¼ m=ððsH 	 1=2Þc2s Þ � 10	8 s would be required for the
D2Q9 ‘‘stream-and-collide’’ LBGK scheme (with ðsH 	 1=2Þ ¼ 10	2 to ensure the numerical sta-
bility). The corresponding grid size is dx ¼

ffiffiffi
3

p
csdt � 1 lm. Similar estimates for water 16

(cs � 1500 m/s and mH2O � 10	7 m/s) yield dt � 10	11 s and dx � 10 nm.

Remark 3. Direct counterpart of the LBE method in ‘‘traditional’’ CFD is the Chorin�s method of artificial com-

pressibility (Chorin, 1967). In this approach, the governing equations of viscous incompressible fluid dynamics are

substituted by the following system of equation:

The method of artificial compressibility ðACÞ
@tq þ @jqrefuj ¼ 0

@tui þ @juiuj ¼ 	 @iP
qref

þ m@jð@iui þ @iujÞ þ gi
P ¼ q

d : artificial equation of state

8<: ð41Þ

where qref is the density of the modeled incompressible fluid; q is the artificial density; d ¼ 1=
ffiffiffiffi
cs

p
is the artificial

compressibility; and cs is the artificial sound speed. One can also introduce the artificial Mach number, defined as

M ¼ U0=cs, where U0 is a characteristic velocity scale. As can be seen later (Section 5.2), this set of governing equations

is essentially the same as that of the LBE method, except that there are no artifact terms present and there exist a greater

flexibility to vary fluid viscosity. Recent development of the Chorin�s AC method is a ‘‘numerical acoustic relaxation’’

(NAR) method (Nourgaliev et al., 2001). In Nourgaliev et al. (2001), one can find more about comparison of the LBE

and NAR.

4. Lattice Boltzmann models for hydrodynamics of complex fluids

In the present section, a comprehensive review and critical analysis of all major LBE-based
methods for modeling of complex fluid behavior are presented. We start with general remarks on
the ‘‘LBE hydrodynamics’’, Section 4.1. Then, most commonly used LBE models for complex
fluids are described in Sections 4.2–4.6. Finally, ‘‘pros’’ and ‘‘cons’’ of the LBE modeling

15 Development of new (non-BGK) LBE schemes is promising, from the scheme stability point of view (Lallemand

and Luo, 2000).
16 Importantly, water cannot be considered as an ‘‘ideal gas’’ due to the ‘‘stiff’’ pressure-density relation, P � q7:15.
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framework for simulation of multiphase flows and complex fluids are discussed in details in
Section 4.7.

4.1. General remarks

Modeling of incompressible fluids. As it can be seen from the discussion in Section 3.3, due to
severe limitations on time step and grid size, the LBE method is practically limited to the modeling
of incompressible low-Re-number fluids.
Modeling of thermal flows. Modeling of the �complete� set of transport equations (mass, mo-

mentum, energy) using the discrete kinetic approach has met with significant difficulties. There are
three major �plagues� of the LBGK thermohydrodynamics. First, the thermal LBGK models are
limited to Pr ¼ 1=2 due to a single relaxation time (Alexander et al., 1993). Second, the thermal
LBGK models have severe limitations on allowable variations of temperature and velocity due to
the limited set of the discrete particle velocities. Third, the �thermal� LBGK models are prone to
numerical instabilities due to �large stencil� of discrete velocities, required to recover correct
macroscopic equations (Huang et al., 1997; Boghosian and Coveney, 1998; McNamara et al.,
1995; Sun, 2000; McNamara et al., 1997; Guangwu et al., 1999). For these reasons, the thermal
LBGK models were found inferior to a‘‘continuum CFD’’ finite-difference methods (McNamara
et al., 1997) in computational time, memory requirement and stability. In practice, energy
transport and phase transition cannot be modeled with the existing LBE models and technol-
ogy. 17 Thereafter, we will limit our consideration to the ‘‘isothermal’’ LBE models.
Modeling of thermodynamic behavior. Several LBE models were developed to account for ‘‘non-

ideality’’, external forcing, and different phenomena associated with intermolecular interactions.
Extension of the LBE method to non-uniform (non-ideal) gases, and more generally to fluid–fluid
multiphase flows, is accomplished either heuristically (by applying certain rules which ‘‘mimic’’
complex-fluid behaviour); or based on the Enskog�s extension of the Boltzmann�s theory to dense
gases, with incorporation of the phenomenological models of quasilocal equilibrium constant-
temperature thermodynamics; and using the LBE methodology to couple the later one to the
hydrodynamics of complex fluid. The major challenge is to accurately describe the physical
mechanisms that govern the interface evolution (transport, breakup and coalescence). The chief
difficulty is related to the breakdown of the continuum mechanics theory at the fluid interfaces,
where material properties experience drastic changes. Considering interfaces, one naturally and
intuitively thinks in terms of molecules of different kind, interacting over very short distance
across the interfaces. Thus, intuitively, the models operating with the concept of particles and
molecules should have methodological advantages over the methods of the �continuum me-
chanics�.
Modeling of particulate suspensions in incompressible fluids. The LBE method has been suc-

cessfully applied to particulate suspensions in incompressible fluids, a class of problems with
complex geometry and moving boundaries. The key here is to accurately account for the mo-
mentum transfer across the solid–fluid boundary while conserving mass. In general, there are two

17 Recent studies of non-BGK LBE and implicit LBE models might lead to the progress in this direction (Lallemand

and Luo, 2000).
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basic LBE formulations (Ladd, 1994a,b, Aidun and Lu, 1995, Aidun et al., 1998) for this class of
problems.
In the first approach (Ladd, 1994a,b), the fluid occupies the entire computational domain with

the solid particles occupied with �interior� fluid, eliminating the solid–fluid interface as far as mass
conservation is concerned. This approach gives accurate results as long as the time scale based on
the kinematic viscosity of the interior fluid is sufficiently small and the contribution of the inertia
of the interior fluid is accounted for when computing the inertia of the particle. This formulation
can be used only when the solid density is larger than the fluid density.
The second approach (Aidun and Lu, 1995, Aidun et al., 1998) considers the solid particle

without the interior fluid and, therefore, applies to any solid to fluid density ratio. The LBE based
simulations of suspended particles give results (Aidun et al., 1998) in good agreement with the
finite element solutions of the Navier–Stokes equations (Feng et al., 1994) for low to moderate
particle Reynolds number. It is shown (Ding and Aidun, 2000) that this method, when applied
with care, can produce very accurate particle trajectories over very long time periods, making it
possible to investigate the dynamics and stability of particle motion, even near points of bifur-
cation. By analysis of the appropriate phase-space trajectories near transition points, the LBE
method has been useful in revealing the type of bifurcation and the scaling laws governing the
particle motion (Ding and Aidun, 2000).

4.2. Enskog extension to dense gases

In real (�dense�, �non-ideal�) gases, the mean free path is comparable with molecular dimensions.
Thus, additional mechanisms for momentum and energy transfer must be considered. Beside the
transfer of molecular properties between collisions, a transfer during the collision events must be
accounted for (Chapman and Cowling, 1970). This collisional transfer has been considered by
Enskog (1921), who approximated the effect of the exclusion volume of the molecules under
constant temperature conditions by explicitly adding the ‘exclusion volume’ term into the Boltz-
mann collision integral. The most commonly used (approximate) form of this term is

ð@tf Þcoll; Enskog ¼ ð@tf Þcoll; Boltzmann 	 f eq bqvðe	 uÞ � r lnðq2vÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Approximation of the Enskog’s ‘exclusion volume’ term

ð42Þ

where b ¼ 2pd
3m is the second virial coefficient in the virial equation of state; v is the increase in

collision probability due to the increase in fluid density, which has the following asymptotic form
(Chapman and Cowling, 1970):

v ¼ 1þ 5
8
bq þ 0:2869ðbqÞ2 þ 0:1103ðbqÞ3 þ � � � ð43Þ

and d and m are the diameter and mass of the molecules, respectively. Combination of Eqs. (1), (2)
and (42), known as the �Enskog equation� in the literature (Harris, 1971), was adopted by Luo in
an attempt to develop a �unified theory of lattice Boltzmann models for non-ideal gases� 18 (Luo,
1998).

18 Luo employed the BGK collision operator multiplied by v, ð@tf Þcoll; Boltzmann ¼ 	vðf 	 f eqÞ=s.
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It is instructive to note that, in his derivation, Enskog employed a �hard-sphere model�, which
has the advantage of mathematical simplicity, since many-body interactions are neglected (col-
lisions are instantaneous). This model is, however, not appropriate for real gases under high
pressure, because the molecules are in the force field of others during a large part of their motion,
and multiple encounters are not rare 19 (Chapman and Cowling, 1970).

4.3. He, Shan and Doolen extension to dense gases

He et al. (1998) proposed the following approximate model of dense gases. The starting point
was the LBGK equation in the form: 20

@tf þ e � rrf ¼ 	 f 	 f
eq

s
þ ðFþ gÞ � ðe	 uÞ

qc2s
f eq ð44Þ

where F and g are the effective molecular interaction and gravity forces, respectively, a ¼ Fþg
q . The

effective molecular interaction force F is designed to simulate non-ideal gas effects.

F ¼ 	qrV|fflfflfflffl{zfflfflfflffl}
Intermolecular attraction by mean-field approximation

	 bq2c2sv � r lnðq2vÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Enskog’s exclusion volume effect of the molecules on the equilibrium properties of dense gases

ð45Þ

The intermolecular attraction potential 21 V is expressed as

Vðr0Þ ¼
Z
r01>d

uattrðr01Þqðr1Þdr1 ð46Þ

where uattrðr01Þ is the attractive component of the intermolecular pairwise potential of molecules �0�
and �1� separated by distance r01 ¼ jr0 	 r1j. The next step is to expand density about r0. Assuming
that density gradients are small, the intermolecular attraction potential is expressed as

V ¼ 	2aq 	 jr2q ð47Þ
where constants a and j are given by

a ¼ 	 1

2

Z
r>d
uattrðrÞdr; j ¼ 	 1

6

Z
r>d
r2uattrðrÞdr ð48Þ

with j determining the strength of the surface tension. Elucidating the thermodynamical aspects
of this model, the intermolecular force F can be cast into the following form (He et al., 1999):

19 Enskog�s preference of the �hard-sphere model� rooted in the belief that molecular chaos is valid for rigid spherical
molecules even at high gas densities. This assumption is accurate only for uniform steady state (Chapman and Cowling,

1970), while for non-uniform state (for example, in the regions of fluid–solid boundaries and fluid-gas interfaces),

correlation between velocities of neighboring molecules may exist due to a memory effect.
20 Here, we would like again to note the conceptual difficulty with interpretation of the ‘‘LBEs molecules’’, due to the

definition of sound speed by Eq. (14) (see Remark 1).
21 Implementation of the intermolecular attraction potential m allows to effectively compensate for certain limitations

of the Enskog �hard-sphere� model.
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F ¼ 	rPH þ jqrr2q|fflfflfflfflffl{zfflfflfflfflffl}
Force associated with surface tension

PHðqÞ ¼ bq2c2sv 	 aq2 ¼ P 	 qc2s|fflfflfflffl{zfflfflfflffl}
‘Non-ideal part’ of the equation of state

; P ¼ qc2s ð1þ bqvÞ 	 aq2 ð49Þ

Setting b ¼ v	1
qv , the van der Waals equation of state is obtained: 22

P ¼ qc2s
1	 bq

	 aq2 ð50Þ

4.4. Free-energy-based models

Swift et al. (1996, 1995) developed a model for non-ideal fluids to account for the interfacial
thermodynamics. The general idea is to incorporate phenomenological approaches of interface
dynamics, such as Cahn–Hilliard and Ginzburg-Landau models, using the concepts of free-energy
functional; and to utilize the discrete kinetic approach as a vehicle for coupling with complex-fluid
hydrodynamics. The pressure tensor is defined using the Cahn–Hilliard�s approach for non-
equilibrium thermodynamics. Strictly speaking, this model is phenomenological, in which the
thermodynamic effects are introduced through a phenomenological equation of state. The term
�free-energy-based� is attributed to the model chosen for pressure tensor Eq. (51) (Cahn and
Hilliard, 1958).

P
ð0Þ
i;j ¼ P0

h
	 jq@2

jq 	 j
2
ð@jqÞ2

i
di;j þ j@iq � @jq ð51Þ

Thermodynamical pressure P0 can be given by, e.g., van der Waals equation, Eq. (50). Parameter
j is a measure of the interface free energy. For flat interfaces, j is related to the coefficient of
surface tension r through the equation:

j ¼ rR
ðoq
onÞ

2
dn

ð52Þ

where n is the normal-to-interface direction.
Multi-component versions of the free-energy-based model were developed in Swift et al. (1995)

and Lamura et al. (1999).

4.5. Interparticle interaction potential model of Shan and Chen

One of the first LBE model for multiphase flow is due to Shan and Chen (Shan and Chen, 1993,
1994; Shan and Doolen, 1995, 1996). In this model, an additional momentum forcing term is
explicitly added to the velocity field after each time step:

u0ðx; tÞ ¼ uðx; tÞ þ C
!ðx; tÞ where C

!ðx; tÞ ¼ 	 s
q

wðxÞ
Xb
a

Gawðxþ eaÞea ð53Þ

22 Other equations of state can be implemented in a similar way.
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where w is a ‘‘potential’’ function and G is a ‘‘strength’’ of the interparticle interaction. The
�corrected� velocity u0 is employed in the equilibrium distribution function, given by Eq. (B.9). By
introducing an additional forcing term, this model effectively mimics the intermolecular interac-
tions (�complex fluid behaviour�). Although it is possible to show that the total momentum in
the whole computational domain is conserved (Shan and Chen, 1994), the momentum is not
conserved locally. As a result, a spurious velocity always exists in regions adjacent to the inter-
face, Fig. 2. The forcing term C

!
in Eq. (53) corresponds to the following non-local potential

function

Vðx;x0Þ ¼ Gðx;x0ÞwðxÞwðx0Þ ð54Þ
One can avoid the step Eq. (53) by directly substituting u0 into the equilibrium distribution

function Eq. (B.9). Effectively, this means addition of the following ‘‘correction’’ term to the
equilibrium distribution function (Nourgaliev et al., 2002):

f eqa ¼ f eqa þ dfHa ; a ¼ 0; . . . ; b

dfH0 ¼ 1	 w0

� ð2Þ

"
	 � ð2Þ

� ð4Þ

#
� Ciui

�
þ C2

i

2q

�
and

dfHa 6¼0 ¼ wa
eaiCi 	 uiCi 	 C2

i =ð2qÞ
� ð2Þ

�
þ
eaieaj
2� ð4Þ Ciuj

�
þ Cjui þ

CiCj

q

�� ð55Þ

Fig. 2. Velocity distribution across the interface for the ‘‘Shan–Chen’’ and ‘‘free-energy-based’’ models. Bubble of the

van der Waals fluid at equilibrium (Nourgaliev et al., 2002).
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4.6. He, Chen and Zhang model

He et al. (1999) extended the HSD model to incompressible multiphase flow. Two sets of
distribution function are utilized. The first one is used to ‘‘capture’’ incompressible fluid�s pressure
and velocity fields, using the concept of ‘‘artificial compressibility’’ (He and Luo, 1997a). Another
discrete distribution function ia is introduced with the sole purpose to ‘‘capture’’ the interface;
which makes this approach close in spirit to the ‘‘continuum CFD’’ methods for interface cap-
turing––the ‘‘level set’’ and ‘‘volume-of-fluid’’ approaches. After each time step, the ‘‘index’’
function / ¼

P
a ia is re-constructed, allowing to enforce a smooth transition of densities and

viscosities at the ‘‘numerically smeared’’ interface:

qð/Þ ¼ q1 þ
/ 	 /1

/2 	 /1

ðq2 	 q1Þ

mð/Þ ¼ m1 þ
/ 	 /1

/2 	 /1

ðm2 	 m1Þ
ð56Þ

where q1, q2, m1 and m2 are density and kinematic viscosity of the two fluids; and /1, /2 are the
minimum and maximum values of the �index� function, respectively.

4.7. Assessment of the LBE modeling framework for multiphase flow and complex fluids

Since the LBE method is a particle method, it is argued that, for simulation of interfacial
phenomena, the LBE method has potential to be superior comparing to the ‘‘continuum’’ CFD
methods (Shan and Chen, 1993,1994; Shan and Doolen, 1995,1996; Swift et al., 1995,1996;
Wagner and Yeomans, 1997). In the present section, we will address the question whether, why
and when the LBE approach may be advantageous for simulation of the interfacial phenomena. It
is important to realize that the computational modeling of multiphase flows is not open for
�purism�. That is, there are no �universal models� able to perfectly work under any flow conditions.
One has to be aware of the limitations and advantages of the approach chosen, since every one has
its own domain of applicability. In Appendix C, we provide a classification of the modern
computational methods for fluid–fluid multiphase flows, which would enable us to properly ap-
preciate the perspectives of the discrete kinetic approach.
To discuss the LBE method for multiphase flows, we have chosen three most successful and

popular LBE models: the �Shan–Chen� (�SC�) model (Section 4.7.1); the �free-energy-based� model
(Section 4.7.2); and the �He–Shan–Doolen� (�HSD�) model (Section 4.7.3). The other multiphase
LBE models are due to Gustensen et al. (1991) and Luo (1998).

4.7.1. Shan–Chen model

The �SC� LBE method (Shan and Chen, 1993, 1994; Shan and Doolen, 1995, 1996) has been
quite successful in simulation of several fundamental interfacial phenomena, such as, e.g., Laplace
law for static droplets/bubbles and oscillation of a capillary wave (see for review Chen and Do-
olen, 1998). However, there are a few limitations of the �SC� model, which make this method
inferior in comparison to other methods for multiphase flows.
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• The first serious problem is that one cannot introduce temperature which is consistent with
thermodynamics. It is possible to show that the �SC� model has the following equation of state
(Shan and Chen, 1994):

P ¼ c2sq þ bc2G
2D

w2ðqÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
PH

ð57Þ

where b ¼ 24 and D ¼ 2 for a D2Q9 lattice. Suppose we would like to study fluid with the �non-
ideal� part of the equation of state P �. In order to reproduce this equation of state, the following
w function must be utilized:

wðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DPH

bc2G

r
; PH ¼ P 	 c2sq ð58Þ

It is possible to show, that the Maxwell�s ‘‘equal-area’’ reconstruction is possible only for one
special form of the potential function, w ¼ w0 expð	q0=qÞ, where w0 and q0 are arbitrary
constants (Shan and Chen, 1994). The role of temperature in this model is effectively taken by
the strength of the interparticle interactions G. By varying G, one could construct ðG	 qÞ-
diagram, which mimics the ðT 	 qÞ-diagram, Fig. 3.

• The next problem is related to the way this model represents capillary effects, which can be
quantified by the coefficient of surface tension r. It can be shown, that for the �SC� model,
in the case of the flat interface, the coefficient of surface tension can be calculated from the fol-
lowing equation (Shan and Chen, 1994):

r ¼ c2

Dþ 2

Z þ1

	1

ffiffiffiffiffiffi
PH

p d2
ffiffiffiffiffiffi
PH

p

dn2
dn ð59Þ

Fig. 3. (a) (G	 Dq) diagram for the �SC� model (Dq ¼ qliq 	 qgas), demonstrating the occurrence of the first-order phase

transition at the analytically predicted ‘‘critical’’ strength of interparticle interactions, G ¼ 1=9 (Sehgal et al., 1999) and
(b) typical density distribution at the state, close to the equilibrium.
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where n is a direction normal to the interface. This means that r is coupled to the equation of
state through P � and there is no freedom to vary it. Typically, for a chosen potential function
and ‘‘strength of interparticle interactions G’’, the surface tension of the ‘‘SC’’ model is ‘‘em-
pirically’’ determined by generating circular bubbles/droplets of different radii in a periodic
domain, and estimating the slope of the ‘‘pressure-difference vs. inverse of radius’’ relation
(Laplace law, Fig. 4) (Yang et al., 2001; Sehgal et al., 1999).

• Another severe limitation is related to the inability to represent different viscosities in different
phases. All LBE simulations of multiphase flows performed to date have assumed that all
phases or components of the multiphase system possess the same kinematic ðmÞ and ‘‘second’’
ðn=qÞ viscosities, defined by the relaxation time 23 s and lattice geometry, Eq. (84).

In our classification of the CFD methods for multiphase flows, Appendix C, the �SC� model
belongs to the class of ‘‘physically diffuse-interface’’ methods. These methods do not require to
‘‘track’’ or ‘‘capture’’ the interface position, since the ‘‘phase separation’’ and ‘‘interface sharp-

Fig. 4. Laplace law for the ‘‘SC’’ and the ‘‘free-energy-based’’ models: DP as a function of 1=rb (rb is a radius of the

generated bubble) for a van der Waals fluid. Solid and dashed lines are the results from the ‘‘flat interface test’’, with

thermodynamical definition of surface tension by Eq. (52) (Nourgaliev et al., 2002).

23 One possible way to vary viscosity is to introduce spatially variable relaxation time, which allows variable viscosity

in the �bulk� region of different fluids (Martys and Chen, 1996). Effect of this approach on dynamics of interface has yet

to be investigated.
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ening’’ mechanisms are provided by the momentum forcing term C
!
. Effectively, C

!
plays the role

of both the Korteweg�s capillary stress tensor and the ‘‘non-ideal’’ part of the equation of state P �.
The �SC� method builds the interface physical model based on the continuum variable
q : C

!¼ F½w ¼ f ðqÞ�. There is no direct use of the one-particle probability distribution function,
fa, a distinct feature of the LBE method.

4.7.2. ‘‘Free-energy-based’’ model by Swift et al.
The free-energy-based LBE approach has been applied to several physical phenomena in binary

and ternary fluids, such as flow patterns in lamellar fluids subjected to shear flow (Gonnella et al.,
1997); effect of shear on droplet phase in binary mixtures (Wagner and Yeomans, 1997); spon-
taneous emulsification of droplet phase in ternary fluid, which mimics the oil–water-surfactant
systems (Lamura et al., 1999); etc.
The main advantage of this model over the �SC� LBE method is that it was formulated to

account for equilibrium thermodynamics of non-ideal and multi-component fluids at a fixed
temperature, allowing thus to introduce well-defined temperature and thermodynamics. The
model is, therefore, consistent with the ‘‘Maxwell�s equal-area reconstruction’’ procedure, Fig. 5.
Furthermore, since the model admits local momentum conservation, the interfacial spurious

velocity is nearly eliminated (Nourgaliev et al., 2002) (Fig. 2).
Similar to the �SC� model, the free-energy-based models do not utilize the �particle� nature of the

discrete kinetic approach. The major drawback of this approach is that the model suffers from
unphysical Galilean invariance effects, coming from the �non-Navier–Stokes� terms, which appear
at the level of the Chapman–Enskog analysis of the discrete Boltzmann equation (see Section 5.4
and Appendix E). Efforts are being made to reduce this unphysical effect (Holdych et al., 1998).

Fig. 5. Coexistence curve (gas branch), calculated by the ‘‘SC’’ and the ‘‘free-energy-based’’ models (Nourgaliev et al.,

2002) for a van der Waals fluid. Tc is a ‘‘critical temperature’’.

R.R. Nourgaliev et al. / International Journal of Multiphase Flow 29 (2003) 117–169 139



4.7.3. He, Shan and Doolen model

This model was developed (He et al., 1998) as a revision of the �SC� model. In difference to the
�SC� model, the �HSD� model is linked to the kinetic theory of dense gases, Section 2.1. The in-
termolecular interactions are formulated using the approximation of the Enskog extension of the
Boltzmann equation. As a result, the �HSD� approach is more flexible for implementation of the
thermodynamical model, with the ‘‘consistent’’ temperature concept, admitting the correct
Maxwell�s ‘‘equal-area’’ reconstruction procedure. The capillary effects are modeled by the explicit
implementation of the ‘‘density gradient model’’, jrr2q, Eq. (49), allowing flexibility in variation
of the coefficient of surface tension by varying the parameter j.
The serious limitation of the ‘‘HSD’’ model is related to the numerical instability, associated

with the �stiffness� of the collision operator, when the �complex fluid� effects are introduced through
the �forcing� term, Eq. (49). These stability problems might be alleviated by providing �robust�
numerical schemes for advection and collision operators, like those discussed in Section 3.2.2 and
Teng et al. (2000).
The two-component version of the �HSD�model (‘‘He–Chen–Zhang extension’’, see Section 4.6)

is close in spirit to the ‘‘front capturing’’ methods of the �NDIA� (see Appendix C), where the
‘‘index’’ function / Eq. (56) effectively plays the role of the �volume-of-fluid� or the �level set�
functions. In He et al. (1999), this model has been used to simulate Rayleigh–Taylor instability. The
results of the simulation are comparable with those obtained by the ‘‘continuum’’ CFD approaches,
using the ‘‘VOF’’, the ‘‘Level Set’’ and Tryggvason�s ‘‘front-tracking’’ methods. Fig. 6 shows
comparison of the HSD LBEmodel with the pseudocompressible NARmethod (Nourgaliev et al.,
2001). The later utilizes the level set function approach for ‘‘capturing’’ interface. 24 While being
able to describe basic numerical tests for multiphase flows with accuracy comparable to the LBE
method (e.g., single-mode Rayleigh–Taylor instability, Fig. 6), the NAR approach offers important
flexibility currently not available in LBE. For example, implementation of variable fluid viscosity
and heat transfer is straightforward. Perhaps more importantly, in NARwe have no constraints on
the density ratio of the fluids across an interface, as applicable in all low-pressure liquid-gas systems.
This is demonstrated by the dam-breaking problem (density ratio 1:1000) in Fig. 7.

4.7.4. Summary
On one hand, the LBE methods for fluid–fluid multiphase flows are able to reproduce several

basic interfacial phenomena, such as spinoidal decomposition in binary fluids, oscillation of a
capillary wave, Rayleigh–Taylor instability, etc., with the results comparable to those obtained by
the methods of the ‘‘continuum’’ CFD. On the other hand, the currently existing multiphase LBE
methods are not able to beneficially utilize the �kinetic theory origin� of the method. That is, in
order to simulate the interfacial phenomena, all currently existing LBE models practically employ
the same techniques, as those used in the ‘‘continuum’’ CFD: i.e., intermolecular interactions are

24 The ‘‘Numerical Acoustic Relaxation’’ (NAR) method is devised from the classical concept of ‘‘artificial

compressibility’’ due to Chorin and combined with a ghost-fluid methodology and level-set algorithm for interface

capturing and robust treatment of phase coupling. High accuracy and computational efficiency of the method are

achieved by using a characteristics-based conservative finite-difference approach and introducing a generalized ‘‘time-

stretching’’ scheme to solve the hyperbolic conservation laws. For details of implementation and validation see

Nourgaliev et al. (2001).
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implemented through the phenomenological thermodynamical models––equations of state; and the
capillary effects are introduced by utilizing the ‘‘density gradient’’ approaches. Additionally, there
are challenges to overcome in order to demonstrate the LBE scheme as a competitive method-
ology, comparing to the direct solution of the conservation equations of continuum mechanics.
These include a consistent modeling of energy transport; elimination of excessive numerical dis-
cretization errors; and robustness and numerical stability under wide range of flow conditions and
multiphase flow properties.

5. Derivation and analysis of the continuum equivalent of the LB equation

In the present section, we outline the major steps of the Chapman–Enskog expansion method,
applied to the LBE BGK method, deriving the successive hierarchy of the LBGK equations,
Section 5.1. Then, the equations of hydrodynamics are derived and analyzed in Sections 5.2–5.4.

5.1. Chapman–Enskog expansion method

The purpose of the Chapman–Enskog method is to solve Boltzmann equation by successive
approximations. This shall yield solutions, that depend on time implicitly through the local
density, velocity and temperature, f ðtÞ ¼ f ½qðtÞ; uðtÞ; T ðtÞ�––the �Chapman–Enskog ansatz�,

Fig. 6. Rayleigh–Taylor instability: Comparison of the ‘‘Level Set-NAR’’ (Nourgaliev et al., 2001) and the HSD-LBE

(He et al., 1999) methods. Parameters of the test-case (‘‘Level Set-NAR’’/‘‘HSD-LBE’’): At ¼ 0:5; Re ¼ 256; single-

mode initial perturbation with amplitude 10%; grid resolution: ð128� 256ÞNAR=ð256� 1056ÞLBE. The ‘‘upper’’ fluid has
density q ¼ 3; while the ‘‘lower’’ fluid has density q ¼ 1.
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(Huang, 1963). In the present section, we outline the basic steps of the procedure, applied to the
isothermal discrete Boltzmann equation (28).
First, we introduce a formal expansion of the discrete probability distribution function:

fa ¼ f ð0Þa þ ef ð1Þa þ e2f ð2Þa þ � � � ¼
X1
j¼0

ejf ðkÞa ð60Þ

where e is a lattice Knudsen number, Eq. (26), which keeps track of the order of the terms in the
series. The Chapman–Enskog expansion provides a consistent and practical definition of f ðkÞa
(Huang, 1963). The functions f ðkÞa are defined in such a way so that f ðkÞa decreases as j increases.
To satisfy Eq. (21), the first three moments of the zeroth approximation shall reproduce mac-
roscopic density, velocity and kinetic energy, while corresponding moments of the higher-order
terms are set to zero:X

a

f ð0Þa ¼ q;
X
a

f ð0Þa eai ¼ qui;
1

2

X
a

f ð0Þa ðeai 	 uiÞ
2 ¼ qe;X

a

f ðnÞa ¼ 0;
X
a

f ðnÞa eai ¼ 0;
X
a

f ðnÞa e2a ¼ 0; n > 0
ð61Þ

Fig. 7. Collapse of water column in a rectangular box using the ‘‘Level Set-NAR’’ approach. Density ratio is 1:1000.

Dimensions of the water column and box are L� 2L and 4L� 2:3L, respectively (L ¼ 14:6 cm).
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LBE conservation laws. Substituting expansion Eq. (60) into Eq. (28) 25 and taking the first
�discrete moment� (

P
a Eq. (28)) result in the mass conservation equation

Mass conservation law:

@tq þ @jquj ¼ 0 ð63Þ

Taking the second �discrete moment� ð
P

a Eq: ð28Þ � eaiÞ yields the momentum conservation law:

@tqui ¼ 	@j
X1
n¼0

en
X
a

eaieajf
ðnÞ
a þ aj

c2s

X
a

f eqa eaieaj

 
	 quiuj

!
ð64Þ

Introducing the nth approximation of the pressure tensor as

P
ðnÞ
i;j �

X
a

ðeai 	 uiÞðeaj 	 ujÞf ðnÞa ð65Þ

the momentum conservation equation (64) is re-arranged into the following form: 26

Momentum conservation law:

@tqui þ @jquiuj ¼ 	@j
X1
n¼0

enPðnÞ
i;j þ

aj
c2s
ðPeq

i;j 	 quiujÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Fi;j

ð66Þ

To derive the kinetic energy conservation equation, substitute expansion Eq. (60) into Eq. (28),
then multiply it by e2a=2, and sum over all molecule directions. In addition, make use of the
following equation:

@t
X
a

f ð0Þa

e2a
2
¼ @tqe þ ui@tqui 	

u2

2
@tq ð67Þ

coming from the definition of the kinetic energy Eq. (21) and constraints Eq. (61). Also, introduce
the nth approximation of the heat flux as

Q
ðnÞ
i � 1

2

X
a

ðeai 	 uiÞðeaj 	 ujÞ
2f ðnÞa ð68Þ

which allows to write the energy conservation equation as

25 To avoid using expansions:

faðrþ eadt; t þ dtÞ ¼
X1
k¼0

en

n!
Dnt faðr; tÞ; Dt � ð@t þ earÞ ð62Þ

traditionally employed to evaluate the �stream-and-collide� advection operator,AðfaÞ ¼ faðrþ eadt; t þ dtÞ 	 faðr; tÞ (He
and Luo, 1997a; Swift et al., 1996), we assume that high-order finite-difference scheme is applied to the

AðfaÞ ¼ @tfa þ eaj@jfa (see Section 3).
26 Note, the following notation is in use: Peq

i;j �
P

a f
ðeqÞ
a eaiaaj :
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Kinetic energy conservation law:

@tqe þ @jqeuj ¼ 	@j
X1
n¼0

enQðnÞ
j 	 @jui

X1
n¼0

enPðnÞ
i;j

þ aj
c2s

X
a

f ðeqÞa

ðeaj 	 ujÞe2a
2

	 eaieajui
� �

þ quju2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qj

ð69Þ

LBE successive approximation. To obtain a consistent scheme of successive approximation, f ðnÞa
is defined in such a way that if all f ðkÞa , P

ðkÞ
i;j and Q

ðkÞ
j are neglected for k > n, than we have the nth

approximation to the distribution function and to the hydrodynamic equations. To find such a
definition, we decompose Eq. (28) into successive equations for f ðnÞa in the following manner.

1. Introduce expansion:

Dfa ¼ Df ð0Þa þ eDf ð1Þa þ e2Df ð2Þa þ � � � ð70Þ
Consistency of this expansion with Eq. (60) follows from the linearity of the operator D � eaj@j.

2. Consider @tfa. Due to the �Chapman–Enskog ansatz�, fa depends on time implicitly, only
through the q, qui and qe. Thus,

ofa
@t

¼ ofa
oq

oq
ot

þ ofa
oqui

oqui
ot

þ ofa
oqe

oqe
ot

ð71Þ

To expand Eq. (71) into infinite series in powers of e, expand ofa=oq, ofa=oqui and ofa=oqe as

ofa
oq

¼ of ð0Þa

oq
þ e

of ð1Þa

oq
þ e2

of ð2Þa

oq
þ � � �

ofa
oqui

¼ of ð0Þa

oqui
þ e

of ð1Þa

oqui
þ e2

of ð2Þa

oqui
þ � � �

ofa
oqe

¼ of ð0Þa

oqe
þ e

of ð1Þa

oqe
þ e2

of ð2Þa

oqe
þ � � �

ð72Þ

The expansions for time derivatives @tq, @tqui and @tqe must be defined to be consistent with the
conservation laws Eqs. (63), (66) and (69). Thus, the definition of @n=@t is taken from the nth
approximation to the conservation laws:

Mass conservation:

ot0q � 	@jquj
otnq � 0 ðn > 0Þ

ð73Þ

Momentum conservation:

ot0qui � 	@jquiuj 	 @jP
ð0Þ
i;j þ Fi;j

otnquj � 	@jP
ðnÞ
i;j ðn > 0Þ

ð74Þ
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Energy conservation:

@t0qe � 	@jqeuj 	 @jQ
ð0Þ
j 	 @jui �Pð0Þ

i;j þ Qj
@tnqe � 	@jQ

ðnÞ
j 	 @juj �PðnÞ

i;j ðn > 0Þ ð75Þ

As a result, the following consistent expansion of @t is obtained:
27

@t ¼ @t0 þ e@t1 þ e2@t2 þ � � � ð77Þ
3. With the defined expansions (64), (70) and (77), the LBE transport equation (28) can be written

as: 28

½ð@t0 þ e@t1 þ e2@t2 þ � � �Þ þ D�ðf ð0Þa þ ef ð1Þa þ e2f ð2Þa þ � � �Þ

¼ 	 1

es
½ðf ð0Þa þ ef ð1Þa þ e2f ð2Þa þ � � �Þ 	 f eqa � þ aj

c2s
ðeaj 	 ujÞf eqa ð78Þ

4. To uniquely define f ðnÞa we require that the coefficient of each power of e vanish separately in Eq.
(78). Thus, the equations to be solved to yield all the f ðnÞa are

Successive hierarchy of the LBGK equations:

ð79Þ

In the Chapman–Enskog theory for the Boltzmann equation, in order to reproduce the Navier–
Stokes equations, only the first two approximations f ð0Þa and f ð1Þa are required. 29

27 This formulation differs from Alexander et al. (1993) and Chen et al. (1994), where the time derivative is expanded

as

@t ¼ e@t1 þ e2@t2 þ � � � ð76Þ
28 Note, ð̂ð�Þ is omitted.
29 There exist fundamental difficulties when truncations of the Chapman–Enskog expansion are used beyond the

Navier–Stokes order f ð1Þa , (�Burnett-� and �super-Burnett� equations level). Notably, any truncation beyond f ð1Þa is

inconsistent with the Clausius–Duhem inequality, which is often taken as a representation of the second law of

thermodynamics (Slemrod, 1999). This fact was first noted for compressible gas dynamics by Bobylev (1982) and later

by Luk�shin (1986). Although the modifications of Navier–Stokes equations due to Burnett were expected to provide

results superior to that of Navier–Stokes equations under high-Kn numbers, present evidences indicate that this is not
so; in fact, where the Navier–Stokes equations are themselves perhaps not completely adequate, the higher-order

equations may even be inferior. Since the expansion Eq. (60) is asymptotic; when the first two terms give a very good

approximation, the third term may provide a further refinement. However, when the first two terms fail, inclusion of

higher-order terms likely make matters worse; this is a known behavior in asymptotic series (Goldstein and Burgers,

1957).
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In the following section, we recover and analyze the equations of hydrodynamics corresponding
to three most commonly used isothermal LBE models.

5.2. Hydrodynamic equations of the ‘ideal fluid’ LBGK model

Navier–Stokes equations. The governing equations of the compressible isothermal Newtonian
fluid hydrodynamics are (Landau and Lifschitz, 1988)

@tq þ @jquj ¼ 0

@tqui þ @jquiuj ¼ 	@iP þ @jTi;j þ qai
ð80Þ

where the viscous stress tensor has the following form (Aris, 1962):

Ti;j ¼ gð@jui þ @iujÞ þ n 	 2

3
g

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
‘Bulk’ viscosity;k

@kuk � di;j ð81Þ

and g and n are the �first� and the �second� fluid viscosities. Following Stokes, the �bulk� and
�second� viscosities are k ¼ 	ð2=3Þg and n ¼ 0, respectively (Aris, 1962).
LBGK hydrodynamic equations 30;31. For the case of the ‘‘ideal-gas LBGK model’’, the pressure

tensor is given bybPPð0Þ
i;j ¼ q̂qĉc2s � di;j ð82Þ

Since the ‘‘zeroth-order solution of the LBGK equation’’, Eq. (79), is f̂f ð0Þa ¼ f̂f ðeqÞa , the momentum
flux tensor is P̂Pð0Þ

i;j ¼ P̂PðeqÞ
i;j . Thus, the momentum conservation equation (66), which is the ‘‘first-

order solution of the LBGK equation’’, Eq. (79), is:

@t̂tq̂qûui þ @ĵjq̂qûuiûuj ¼ 	@îiq̂qĉc
2
s 	 @ĵj e bPPð1Þ

i;j|ffl{zffl}
viscous stress tensor;	bTTLBGK

i;j

0BBB@
1CCCAþ q̂qâai ð83Þ

Viscosity. The �first� and the �second� viscosities are defined as 32

ĝg ¼ ŝseq̂qĉc2s ¼
sĉc2sU0

L|fflffl{zfflffl}
1=Re

q̂q; n̂n ¼ 2

3
ĝg ð84Þ

which renders the following definition of the dimensional kinematic viscosity:

m ¼ sc2s ð85Þ

30 To avoid confusion, in the present section, we will use ð̂ð�Þ to denote non-dimensional variables.
31 In the following analysis, it is assumed that the lattice geometry is chosen in such a way so that � ð4Þ ¼ ĉc4s (see

Appendix A for the lattice geometry).
32 Note, the n̂n is not Stokesian, n̂n 6¼ 0. The value of the �second� viscosity is not important as long as the velocity field

is close to the �divergence-free� condition of the incompressible fluid.
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An assumption of the constant temperature would require the following constraint be satisfied:

@ĵjbQQð0Þ
j ¼ 	e@ĵjq̂qûuj 	 @ĵjûui � bPPð0Þ

i;j þ bQQj

@ĵjbQQð1Þ
j ¼ 	@ĵjûui � bPPð1Þ

i;j

ð86Þ

For this LBGKmodel, the viscous stress term is (details of the derivation are given in Appendix
D):

	@ĵj e bPPð1Þ
i;j

* +
¼ @ĵjcTTLBGK

i;j ¼ @ĵj½cTTi;j� þ bAAðn:1:dÞ
i;j ð87Þ

where cTTi;j is the non-dimensional Navier–Stokes viscous stress tensor, defined by Eq. (81); bAAðn:1:dÞ
i;j

is a ‘‘non-linear 33 deviation’’ of this LBGK model from the classical Navier–Stokes equations,
given by

bAAðn:1:d:Þ
i;j ¼ 1

Re ĉc2s
@ĵj

*h
	 2ûuiûujûuk@k̂kq̂q

+
	 @ĵjq̂q � ûui@k̂k ûukûuj

*
þ ûuj@k̂k ûukûui

+
	 q̂q@ĵj ûuj@ĵjûukûuj

*
þ ûuj@îiûukûui

+i
þ 1

ReFr ĉc4s
@ĵj q̂qûuiûujûukîik
* +

ð88Þ

where Re ¼ q̂q=ĝg ¼ 1=m̂m and Fr are the Reynolds and Froude numbers, respectively.
Thus, the governing equations of this LBGK model are

@t̂tq̂q þ @ĵjq̂qûuj ¼ 0

@t̂tq̂qûui þ @ĵjq̂qûuiûuj ¼ 	@îibPP þ @ĵj
q̂q
Re

ð@ĵjûuj þ @îiûujÞ
" #

þ q̂q
Fr
îii|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Linear Part: not quite incompressible Navier–Stokes ðsee Eq: ðE:6ÞÞ

þ ÂA
ðn:1:d:Þ
i;j|fflfflffl{zfflfflffl}

Non-linear deviations

ð89Þ

where îii is a unit vector specifying the orientation of the external body force.
The deviations of the continuum equivalent of this LBE model from the incompressible Na-

vier–Stokes equations are detailed in Appendix E. From this, one can see the implication of ĉcs, the
dimensionless ‘‘pseudo-sound-speed’’, introduced in Eq. (28). In the linear term, it leads to the
kinematic viscosity and Reynolds number that appears in front of the linear part. By appropriate
choices of ĉcs and ŝs, flow with any Reynolds number (any viscosity) can be modeled by Eq. (14).
On the other hand, in the non-linear (‘‘cubic’’) term, we are left with terms that contain, in ad-
dition to Re, ĉc2s and ĉc

4
s . Thus, we can make these terms as small as we wish by requiring that ĉcs is

chosen so that

ðRe ĉc2s Þ � 1 and ðReFr ĉc4s Þ � 1 ð90Þ

In fact, it turns out that these conditions are automatically satisfied as long as ĉcs � 1, and the
basic stability criterion for integration of the LBE, namely that csdt=dx < 1 are satisfied. To see
this, take N as the number of lattice points in the cross-stream direction (N � 1), and suppose we
chose csdt=dx ¼ 1=

ffiffiffi
3

p
. We then have

33 The term ‘‘non-linear’’ reflects the fact that the deviation is �cubic� in velocity, � uiujuk .
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1

Re ĉc2s
¼ 1ffiffiffi

3
p
Nĉcs

from which it is seen that the condition ĉcs � 1 is moderate because N � 1. Also, you will note
that for inertia flows, Re� 1 , the condition on ĉcs � 1 is moderate, 34 but for viscous flows,
Re < 1, we must obey a stronger condition on ĉcs � 1, so that Re ĉc2s � 1 and the ‘‘non-linear term’’
is smaller than the inertia ‘‘term’’.
We have verified numerically that indeed, as long as these conditions and Dq=q � 1 are sat-

isfied, exact solutions can be obtained arbitrarily close in Poisseulle and Couette flows, for any
values of viscosity (or Reynolds number). Also note that, as appropriate for incompressible
viscous flows, the pressure level is immaterial. If the pressure drop is specified, it implies a cor-
responding density drop, through Eq. (82), and care must be exercised, because errors will be
introduced unless Dq=q remains much less than 1.

5.3. Hydrodynamic equations of the isothermal ‘HSD’ LBGK model for non-ideal fluid

In the He–Shan–Doolen model, the pressure tensor and body force are given by

P
ð0Þ
i;j ¼ qc2s � di;j

Fi;j ¼ qajdi;j; aj ¼
	@jPH þ kq@j@2

kq þ qgj
q

ð91Þ

where gj is an acceleration due to the external body force; and the �non-ideal� part of the equation
of state PH is given by, e.g., van der Waals Eqs. (49) and (50). The distinguished feature of this
model is that the non-ideal equation of state (pressure) is incorporated directly through the
momentum source term. The momentum conservation equation, written in the ‘‘dimensional’’
form, is:

ð92Þ

where the Weber number and density variations are defined as

34 The smallest term in the Navier–Stokes equations is of the order 1=Re, thus, the requirements for ĉcs is

1=Re� 1=Re ĉc2s .
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We � qrU
2
0L

r

dqL ¼ q1 	 qv

qr

and

dqt ¼
Dtq
qr

ð93Þ

respectively; q1 and qv are the saturation density of the liquid and vapor phase under chosen
temperature T ; and Dtq is a scale of the density variation over characteristic time scale t0 � L

U0
. In

the scaling analysis of Eq. (92), the temporal and spatial derivatives of the density are estimated as

@tq � U0Dqt

L

@iq � q1 	 qv

L

@ijq � q1 	 qv

L2
and

@ijkq � q1 	 qv

L3

ð94Þ

In addition, parameters k, a and b are scaled as

k � Lr
q2
r

¼ L2U 2
0

qrWe

a � c2s
qr

and

b � 1

qr

ð95Þ

respectively.
The �constant-temperature� condition is defined by Eq. (86). The viscous stress tensor TLBGK

i;j is
derived in Appendix D. Choosing the lattice with � ð4Þ ¼ ĉc4s , the �first� and the �second� viscosities
are defined by Eq. (84).
The deviations of the continuum equivalent of this LBGK model from the incompressible

Navier–Stokes equations are detailed in Appendix E.

5.4. Hydrodynamic equations of the isothermal ‘free-energy-based’ LBGK model for non-ideal fluid

The governing hydrodynamic equations of this LBGK model, written in the ‘‘dimensional
form’’, are: 35;36

35 The body force has not been incorporated in any existing variants of this model, aj ¼ 0.
36 In the present section, we use ð̂ð�Þ to explicitly denote non-dimensional variables.
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ð96Þ

Derivation of the viscous stress tensor TLBGK
i;j is similar to that one for the ‘‘isothermal 37 ideal

gas’’ model and given in Appendix D:

ð97Þ

In the analysis of this model, we assumed that the lattice geometry is such, so � ð4Þ ¼ ĉc4s . With this,
the following viscosities are obtained:

ð98Þ

Notably, the second viscosity is non-Stokesian. 38 It is also dependent on the virial coefficients of
the equation of state and second gradients of density.
The deviations of the continuum equivalent of this LBE model from the incompressible Na-

vier–Stokes equations are detailed in Appendix E.

6. Computational efficiency

In what follows, we will discuss �pros� and �cons� of the LBE method as a �Navier–Stokes solver�,
in terms of its simplicity, efficiency and capability for an efficient parallelization.

37 Even though the concept of temperature can be introduced in the pressure tensor, it causes violation of the energy

conservation in the LBE discrete kinetic theory, Eq. (69) (Luo, 1998). The �constant-temperature� condition Eq. (86)

cannot be satisfied. This is a generic problem for all ‘‘isothermal’’ LBGK models.
38 For this model, there are strong velocity divergence sources at the interface, making the second viscosity

important.
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6.1. Simplicity

Simplicity in implementation has been used as an argument in favor of the LBE method. The
simplest ‘‘stream-and-collide’’ LBE algorithm with ‘‘bounceback’’ boundary condition formula-
tion is indeed easier to program and handle than the ‘‘continuum’’ CFD algorithms for solving
the Navier–Stokes equations, often involving the solution of the Poisson equation, sophisticated
Riemann solvers to handle convective terms; the use of unstructured grids to accurately describe
flow in complex geometry; etc. However, a fair comparison would instantly eliminate the illusion
about the superior simplicity of the LBE method. In fact, direct counterparts of the LBE are the
‘‘compressible flow methods for incompressible flows’’, such as, Chorin�s approach of ‘‘artificial
compressibility’’ (AC). This method does not require Poisson equation solvers, and it is also very
simple for implementation on a regular mesh (Nourgaliev et al., 2001). Recent development of the
Chorin�s AC method is the ‘‘numerical acoustic relaxation (NAR)’’ method. In Nourgaliev et al.
(2001), we utilized the NAR for different single- and multiphase flow problems, which include
‘‘Lid-Driven Cavity’’, the ‘‘Doubly Periodical Shear Layer Flow’’, ‘‘Rayleigh–Taylor Instability’’
and ‘‘Collapse of Water Column’’, comparing it with the LBE and other methods of in-
compressible fluid dynamics. Based on our experience with both NAR and LBE, we have found
no advantage of using discrete kinetic method over direct solution of the Navier–Stokes equa-
tions.
The elusive simplicity of the LBE approach further fades away when the LBE method is pushed

to match requirements on accuracy and stability, typical for advanced CFD codes based on
solving the Navier–Stokes equations. In fact, the LBE method is by far more complex when it has
to operate on non-uniform, body-fitted or adaptive lattices, or to have high-order-accurate
treatment of boundary conditions (see for review Chen and Doolen, 1998).

6.2. Efficiency

Computational efficiency of the �isothermal� LBE approach has been discussed in the literature.
In particular, in Chen et al. (1992), the three-dimensional LBE algorithm is reported to be 2.5
times faster than the pseudo-spectral method for incompressible flow, for low-Reynolds-number
conditions.
Comparison of the LBE model with ‘‘continuum’’ CFD incompressible finite-volume (FVM)

method (Patankar�s and Spalding�s SIMPLE algorithm (Patankar and Spalding, 1972)) using the
multigrid technique on block-structured grids was performed by Bernsdorf et al. (1999). A
channel flow with obstacles has been chosen as the test-case. The results of the calculations in-
dicate that when the number of obstacles is small, the FVM is more efficient than the LBE. In
part, the performance of the LBE method is impeded by small time steps, needed to limit the
unphysical compressibility effects via increase of the ‘‘pseudo-sound-speed’’ cs ¼ dx=

ffiffiffi
3

p
dt. As

geometrical complexity of the flow domain increases, the efficiency of the multigrid 39 Poisson
solver decreases. There exists a break-even point between the multigrid FVM and the LBE,

39 Multigrid is currently the best available algorithm for solution of system of algebraic equations.
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beyond which the LBE method is shown to be more efficient than the FVM in complex geome-
try.
As discussed in Nourgaliev et al. (2001), there is no essential advantage of the LBGK schemes

over the methods of �artificial compressibility� (AC), for high- and moderate-Re-number flows.
For massive calculations of flow in complex-geometry configurations, the AC methods are more
efficient than the LBE approach, since a smaller number of governing equations is needed in the
AC method 40 and smaller number of variables needed to be stored. For multicomponent fluids,
the LBE method involves PPDF for each component, further increasing the number of explicit
equations solved and the memory storage requirements.
The LBE approach, however, might still be superior for low-Re-number flows, since there is

practically no large-viscosity-related numerical stability limitations, which dwindle time step in
explicit finite-difference schemes of the ‘‘continuum’’ CFD, dt6 d2x=m (see discussion in Section
5.2). Development of the ‘‘implicit LBGK schemes’’, such as in Verberg and Ladd (1999), might
give an additional advantage to the LBE simulation of the steady-state Stokesian flows and flows
in porous media.

6.3. Parallelization

Scalability is a quantitative measure to evaluate the capability of an algorithm for parallel-
ization. The scalability ðSÞ is defined as the product of the ratio of the computational times spent
for the same computational task, T1=T2, and the correspondent ratio of the number of processors
involved:

S � P2

P1

� T1

T2

where P is the number of processors involved in the calculation. In the ‘‘ultimate parallelization’’
case, S ¼ 1. Parallelization of the LBE algorithm can be achieved by dividing the computational
domain into P subdomains, corresponding to P processors available; solving for each subdomain
on separate processor; and communicating data between processors using MPI (Nourgaliev et al.,
2002). This parallelization strategy is employed in many modern CFD codes (Nourgaliev et al.,
2000). We analyzed the scalability of the LBE method (Nourgaliev et al., 2002) and the ‘‘con-
tinuum’’ CFD finite difference code for compressible fluid dynamics (Nourgaliev et al., 2000,
2001), and found the scalability of both methods in the range 0.7–0.95. The LBE method involves
a more complex stencil, and, thus, the network for inter-processor communication is more so-
phisticated. In two dimensions, each processor, instead of four neighbors of the ‘‘continuum’’
CFD finite-difference code, 41 the D2Q9 LBE code requires eight neighbors. 42 More sophisticated

40 Comparing to the LBE, instead of solving a system of at least six explicit equations (D2Q6 scheme) for

fa ða ¼ 1; . . . ; 6Þ, one has to deal with a system of explicit macroscopic equations for W ¼ ðq; qu; qvÞ. This ratio (3:6)

gets worse in 3D: it becomes 4:14 even for D3Q14. For thermal LBGK models, the minimum number of discrete

velocities is 16 in 2D and 40 in 3D (Chen et al., 1994), thus, the ratio is 4:16 and 5:40, respectively (see also McNamara

et al., 1997).
41 We utilize the high-order-accurate (WENO5, Jiang and Shu, 1996) conservative finite-difference characteristics-

based approach (Nourgaliev et al., 2000; Fedkiw et al., 1998; Nourgaliev et al., 2001).
42 See the ‘‘stencil’’ of the D2Q9 in Fig. 1a.
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processor-network is required in three dimensions, Fig. 1b. Closely related to this is the amount of
information to be �exchanged� at the end of each time step. In the case of the LBEs ‘‘stream-and-
collide’’ D2Q9 scheme, symbolically, 3� 8 float variables are being sent/received, corresponding to
three ‘‘streamed’’ PPDFs, fa, and eight neighbor-processors. For the finite-difference code, 3� 12
variables must be sent/received, corresponding to three conserved variables ðq; u; vÞ and [4
�neighbor-processors�� 3 layers of the finite-difference stencil 43]. Based on the above consider-
ation, one can see that the LBE approach is not an advantageous scheme.
In summary, the LBE method is a ‘‘pseudocompressible’’ solver of incompressible flows. It

shares the advantages, disadvantages and limitations of this class of the CFD methods. This
includes the simplicity and explicitness of the algorithm, which requires no solution of the Poisson
equation; the restrictive simulation time step in order to maintain the low-Mach-number limit
(incompressible flow); and the artificial compressibility effects, r � u ¼ uj@j ln q 	 @t ln q 6¼ 0,
originating from both the linearized ‘‘pseudo-equation of state’’ Pt=d ¼ c2sq and the discretization
errors. Similarly to the ‘‘pseudocompressible’’ methods of the continuum-based CFD, the LBE
approach is efficient in parallelization and suitable for massive computation of incompressible flows
in complex geometry configurations, such as flow in porous media, particulate and suspension
multiphase flows.

7. Concluding remarks

(1) The LBE method is an alternative numerical scheme for description of incompressible
hydrodynamics. The LBE method has potential to serve as an efficient solver for incompressible
low-Re-number flows in complex geometries, including porous media, particulate/suspension
multiphase flows.
(2) Computationally, the LBE method belongs to a class of the pseudocompressible solvers of

the Navier–Stokes equations for incompressible flow. As such, the LBE method possesses the
advantages (simplicity of algorithm, no Poisson equation solver) and limitations (restrictive time
step, artificial compressibility) characteristic of pseudocompressible methods.
(3) Beyond the incompressible homogeneous fluid, the LBE method permits implementation of

phenomenological terms and rules to mimic complex-fluid behaviors in a capacity similar to that
of the continuum-based models of hydrodynamics. In this respect, the LBE models so far failed to
provide a consistent framework for intermolecular interactions by making use of the discrete
kinetic origin of the LBE method. Application of the LBE methods to multiphase situations is
additionally limited by the admissable range of fluid properties (density ratio, surface tension and
kinematic viscosity); time and length scales; and the inability to represent energy transport.
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Appendix A. Lattice geometry and symmetry

Consider the lattice composed of r sublattices in D dimensions. Each sublattice has weight wa,
which is chosen to satisfy certain symmetry requirements. In total, the lattice has a ¼ 0; . . . ; b
links, ea.
The most important properties of the lattice are related to the symmetries of the tensors:

Lni1i2...in ¼
X
a

waðjeaj2ÞðeaÞi1 . . . ðeaÞin ðA:1Þ

which are determined from the choice of the basic lattice directions ea.
The basic condition for standard hydrodynamic behaviour is that tensors LðnÞ for n6 4 should

be isotropic (Wolfram, 1986). Isotropic tensors LðnÞ, obtained with sets of b vectors ea composing r
sublattices in D space dimensions, must take the form

Lð2nþ1Þ ¼ 0

Lð2nÞ ¼ � ð2nÞDð2nÞ

�
ðA:2Þ

where

Dð2Þ
i;j ¼ dij

Dð4Þ
i;j;k;l ¼ dijdkl þ dikdjl þ dil þ djk

Di1i2...i2n ¼
P2n

j¼2 di1ijD
ð2n	2Þ
i2...ij	1ijþ1...i2n

8><>: ðA:3Þ

Coefficients � ð2nÞ in Eq. (A.2) are dependent on the specific lattice geometry, and are given in
Table 1 for the most commonly used lattices.

Appendix B. Equilibrium distribution function

In accordance to the Chapman–Enskog procedure (Section 5.1), the equilibrium distribution
function should satisfy the following constraints:
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Pb
a¼0 f

eq
a ¼ q ‘Mass conservation’Pb

a¼0 f
eq
a eai ¼ qui ‘Momentum conservation’Xb

a¼0
f eqa eaieaj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Peq
i;j

¼ Pi;j þ quiuj ‘Momentum flux tensor’

Xb
a¼0

f eqa eaieajeak|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
D
eq

i;j;k

¼ Mðuidjk þ ujdik þ ukdijÞ ‘Constitutive physics’

ðB:1Þ

where M and Pi;j are the coefficient related to the fluid viscosity and pressure tensor, respectively.
The equilibrium distribution function may be approximated by series of Chapman–Enskog

expansions in macroscopic variables, to the second order, in the low-Mach-number limit:

f eqa 6¼0 ¼ qwa½Aþ Beaiui þ Cu2 þ Deaieajuiuj þ � � ��
f eq0 ¼ qw0½A0 þ C0u2 þ � � ��

ðB:2Þ

Using the symmetry properties of the lattice given in Appendix A, one can show that the con-
straints Eq. (B.1) are satisfied with the following parameters of the expansion (Nourgaliev et al.,
2002):

Table 1

Symmetry characteristics of the most commonly used latticesa

Lattice Order of

symmetry

r wab;c � ð2Þd ;e � ð4Þ ea=c

D2Q7 4th 2 w0 ¼ var ¼ 1
2

. /
3c2 3

4
c4 (0,0)

wa6¼0 ¼ 1	w0
6

ðcos 2pa
6
; sin 2pa

6
Þ

D2Q9 4th 3 w0 ¼ var ¼ 4
9

. /
(0,0)

(Fig. 1a) worth
a ¼ 4wdiag

a
3ð1	w0Þ

5
c2 ð1	w0Þ

5
c4 cyc:ð�1; 0Þ

wdiag
a ¼ 1	w0

20
ð�1;�1Þ

D3Q15 4th 3 w0 ¼ var ¼ 1
8

. /
(0,0,0)

(Fig. 1b) worth
a ¼ 8wdiag

a
3ð1	w0Þ

7
c2 ð1	w0Þ

7
c4 cyc:ð�1; 0; 0Þ

wdiag
a ¼ 1	w0

56
ð�1;�1;�1Þ

aDDQbþ1, where D is a dimension and is the total number of moving directions.
b The most commonly used values are given in brackets.
cNote:

P
a wa ¼ 1.

d c ¼ dx=dt, where dx and dt are the length and time scales, correspondingly.
eNote that the pressure constitutes the diagonal part of the fluid�s stress tensor. Thus, the coefficient before the

second-order Kroenecker symbol di;j is the lattice pseudo-sound-speed, �
ð2Þ � c2s :
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Aþ Cu2 ¼ 2c2s 	 u2

2� ð2Þ þ b ðB:3Þ

B ¼ 1

� ð2Þ ðB:4Þ

Duiuj ¼
uiuj
2� ð4Þ þ

1

2q� ð4Þ PH

ij

�
	 TrðPHÞ

2þD
dij 	 qb� ð2Þ 2

2þD
dij

�
ðB:5Þ

A0 þ C0u2 ¼
1

w0

1

"
	 ð1	 w0Þ

2c2s 	 u2

2� ð2Þ 	 u
2� ð2Þ

2� ð4Þ 	 ðB:6Þ

	
� ð2Þ

� ð4Þð2þDÞ ½TrðP
HÞ 	 qbD� ð2Þ� 	 qbð1	 w0Þ

q

#
ðB:7Þ

where b is a free parameter, D is a space dimension, and TrðPHÞ is a trace of the non-ideal part of
the pressure tensor, PH

i;j ¼ Pi;j 	 q2
sdi;j.

Coefficient M is given by:

M ¼ q
� ð4Þ

� ð2Þ ðB:8Þ

Setting b ¼ 0 and PH

i;j ¼ 0 (�ideal fluid�), we can write f eqa in the following compact form:

f eqa ¼ q 1

"
	 1	 w0

� ð2Þ c2s 	
u2

2

� ð2Þ

� ð4Þ

 
	 1	 w0

� ð2Þ

!#

f eq;0a 6¼0 ¼ qwa
c2s
� ð2Þ

�
	 u2

2� ð2Þ þ
eaiui
� ð2Þ þ

eaieajuiuj
2� ð4Þ

� ðB:9Þ

which are exactly the same equations as given in the LBE literature (Chen et al., 1992; Qian et al.,
1992). Using the pressure tensor given by Eq. (51) and the following equation for b:

b ¼
PH

0 	 jqojjq þ ð 1
D
	 1

2
Þjð@jqÞ2

� ð2Þq
ðB:10Þ

where PH

0 ¼ P0 	 qc2s is a �non-ideal part� of the equation of state, one can obtain the �free-energy-
based� LBE model for �non-ideal fluid� of Swift et al. (1995).
In the �ideal fluid� model, the lattice �pseudo-sound-speed� is a function of the lattice size and

time step, dx and dt, and the weight of the non-moving populations, w0, see Table 1. In the LBE
literature, the value of w0 is chosen in order to remove non-Navier–Stokes terms from the hy-
drodynamic equivalent of the LBE models. For the D2Q9 model, w0 ¼ 4=9 (Qian et al., 1992). In
this case, the non-dimensional �pseudo-sound-speed� is ðcs=cÞ2 ¼ 1=3.
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Appendix C. Multiphase flow modeling

In this section, we provide a classification of the methods of CFD for multiphase, fluid–fluid
flow. We will discuss only the �direct numerical simulation� (DNS) methods (i.e., those which
resolve interface), putting aside �effective field� methods, which employ statistically-/, time- or
spatially-averaged equations for multiphase systems (Drew and Passman, 1999; Ishii, 1975). The
chief criterion used to classify a CFD method for DNS in multiphase flow is the physical concept
of interfaces.
Free-boundary approach, FBA. In this approach the interface between two immiscible fluids is a

free boundary which evolves in time. Equations of fluid motion hold in each fluid. These equa-
tions are supplemented by boundary conditions at the free surface, involving interfacial proper-
ties. 44 The formulation results in a free-boundary problem (Lamb, 1932; Batchelor, 1967, etc.).
Physical quantities, e.g. density and viscosity, are discontinuous across the interface. Physical
processes such as e.g. capillarity occurring at the interface, are represented by the boundary
(‘‘jump’’) conditions imposed there. Computational methods based on the ‘‘free-boundary’’
concept are the boundary element/boundary integral method, (BE/BIM) (Schulkes, 1994; Zhang
and Stone, 1997).
Physical-diffuse-interface approach, PDIA (Batchelor, 1967). This approach is based on the

Poisson�s (1831), Maxwell (1952) and Gibbs (1878) concept of the interface as a rapid and smooth
transition of physical properties between the bulk fluid values. The approach was further devel-
oped by Rayleigh (1892) and van der Waals (1979) with their ‘‘gradient theories for the interface’’
based on the thermodynamic principles, and Korteweg (1901), who proposed a constitutive law for
the capillary stress tensor in terms of the density and its spatial gradients. Corresponding CFD
methods are the ‘‘second-gradient theory’’, ‘‘phase-field’’ and ‘‘Model H’’ (Hohenberg and Hal-
perin, 1977). They all are based on the ‘‘continuum mechanics methodology’’, in which transport
equations for macroscopic variables are constructed, introducing the phenomenological physical
models for interfacial dynamics through the effective forcing terms in the momentum equations
(‘‘capillary stress tensors’’) and additional evolution equations for ‘‘order’’ parameters. The
‘‘PDIA’’ CFD methods were used in a number of applications, including studies of critical point
scaling laws (Hohenberg and Halperin, 1977), capillary waves (Felderhof, 1970), moving contact
lines (Seppecher, 1996), droplets and nucleation (Dell�Isola et al., 1995), droplet breakup (Jacqmin,
1996) and spinoidal decomposition (Gurtin et al., 1996) (see for review Andersen et al., 1998).
Numerical-diffuse-interface approach, NDIA. The methods of this group involve a numerical

scheme to ‘‘capture’’ or ‘‘track’’ the interface. The interface region is numerically smeared-out
over few computational nodes to allow a smooth transition of fluid properties (i.e., density and
viscosity). In this ‘‘numerical diffuse interface’’ region, the capillary effects are represented by
‘‘body forces’’ in the momentum equation, which mimic the Korteweg�s capillary stress tensor.
Advanced CFD developments in this class were made with the ‘‘volume-of-fluid’’ method, VOF
(Hirt and Nichols, 1981); the level set equation method, LSA (Sethian, 1999); and the ‘‘front-
tracking’’ technique by Tryggvason (Unverdi and Tryggvason, 1992).

44 This approach originates from earliest works of Young, Laplace and Gauss, in 1800�s. They considered the

interface between two fluids as a surface of zero thickness endowed with physical properties such as surface tension.
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Appendix D. Derivation of the viscous stress tensor for the LBGK models

In this section, we show the derivation of the viscous tensor for a LBGK model and de-
tailed formula for two other LBGK models. The non-Navier–Stokes terms are grouped into
an artifact tensor to enable a further assessment of the hydrodynamic equivalent of the LBE
models.
Isothermal ideal gas

@jT
LBGK
i;j ¼ 	@jeP

ð1Þ
i;j ¼ 	@je

X
a
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i;j are given by Eq. (B.1).
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Shear viscosity can be identified as
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and
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q
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Combining all terms, the viscous stress tensor is given by
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yielding the second viscosity given by Eq. (84). The remaining terms are agglomerated into the
�artifact� tensor:
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which, by setting � ð4Þ=� ð2Þ ¼ c2s , can be re-arranged to produce the non-linear deviation term
given by Eq. (88).
Free-energy-based model for non-ideal fluid. Repeating the calculations presented above, 45 the

following viscosities and ‘‘artifact’’ terms are obtained:
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þ jo2lq

!!
ðD:8Þ

45 In this derivation though, for simplicity, we neglected the derivatives of the third and higher order. Strictly

speaking, this is not well grounded, because the momentum conservation Eq. (96) contains terms of the third-order

derivative of density.
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‘‘HSD’’ model for non-ideal fluid. The following ‘‘artifact’’ term is obtained for the ‘‘HSD’’
model:
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Appendix E. Evaluation of the deviations from the Navier–Stokes equations

E.1. Ideal gas models

To estimate the order of the non-linear deviation term, we cast the LBGK hydrodynamic
equation (89) into the following dimensional form:

ðE:1Þ

where the Froude number is defined as Fr � U 2
0 =aL; and a is an acceleration due to the external

body force. The non-dimensional density variations are defined by Eqs. (93) and (94). It can be
seen that the non-linear deviation term is negligibly small comparing to the Navier–Stokes
equation terms under conditions 46 ĉcs � 1 (or � ð2Þ � 1, see Table 1).
In difference to our derivation, the LBGK hydrodynamic equations available in the literature

contain also linear deviations. For example, re-arranging the LBGK hydrodynamic equations
given in Chen and Doolen (1998) and Qian et al. (1992) in a similar way as Eq. (E.1), one can
obtain the following ‘‘linear deviation term’’:

ðE:2Þ

which is negligible in comparison to the Navier–Stokes terms in the limit dqL � 1.
The following linear and non-linear deviations can be obtained by re-arranging the LBGK

hydrodynamic equations of Qian and Orszag (1993):

46 Recently, Qian and Zhou (1998) explored a way to eliminate the non-linear term by extending the ‘‘lattice stencil’’

from 9 to 17 discrete velocities in 2D case.
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ðE:3Þ

Both the linear and non-linear terms are negligible under conditions dqL � 1 and ĉcs � 1.
Compressibility effects. It can be seen that the LBE model is not actually incompressible in a

‘‘classical’’ fluid dynamics sense, which requires the velocity field be solenoidal r � u ¼ 0 and
q ¼ const. There are always density variations and velocity divergence sources present, due to
the linearized ‘‘pseudo-equation of state’’ P ¼ c2sq (see Eqs. (E.5) and (E.6)). The undesirable
compressibility effects are minor as long as density variations are small, 47;48 � OðdqLÞ, � OðdqtÞ,
� O dqL

Re

� �
, and thermodynamic effects are not considered.

ðE:5Þ

47 Several LBGK models were developed in an attempt to reduce these compressibility effects (Chen and Ohashi,

1997; He and Luo, 1997a). In particular, He and Luo (1997a) utilized the Chorin�s ‘‘pseudo-compressibility’’ method
(Chorin, 1967), in which instead of Eq. (63) the following macroscopic �pressure� equation is introduced:

1

c2s
@tP þ @juj ¼ 0 ðE:4Þ

Instead of the mass and momentum, the P and Pu are conserved. Eqs. (E.4) and (83) become a �target� macroscopic
model for the ‘‘heuristical’’ building of the equilibrium distribution function. In the case of the steady flow, this model

completely recovers the �divergence-free� velocity field. In the case of the transient flow, the requirement dqt � 1 is still

necessary to keep the divergence sources be suppressed.
48 Another ‘‘incompressible’’ LBE model is due to Chen and Ohashi (1997), in which the incompressibility condition

r � u is regained by applying the velocity correction––an idea borrowed from the �projection� methods (Rider, 1994).
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ðE:6Þ

E.2. Free-energy-based models

The ‘‘linear deviation tensor’’ of the free-energy-based model of the Swift et al. can be written in
the following form:
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ðE:7Þ

and the ‘‘non-linear deviation tensor’’ is:

ðE:8Þ

The linear deviation term includes the unphysical capillary terms of order � O dqL=ĉc
2
s ReWe

� �
.

Comparison of these terms with the capillary stress tensor and the Navier–Stokes viscous stress
tensor gives

A
ðl:dÞ
i;k

Ki;k
� O

1

ĉc2s ð1þ dqLÞRe

 !
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and

A
ðl:dÞ
i;k

@jTi;j
� O

dqL

1þ dqL

1

ĉc2sWe

 !
which indicates that in order to have the unphysical surface tension suppressed, one has to keep
large ĉcs.
Furthermore, the ‘‘linear deviation term’’ includes terms of unphysical viscous stresses of the

order � OðdqL=ReÞ. Comparison of these ‘‘artifacts’’ with the Navier–Stokes viscous stress ten-
sor:

A
ðl:dÞ
i;k

@jTi;j
� O

dqL

1þ dqL

� �
indicates that these unphysical terms cannot be neglected for large density differences q1 	 qv,
even for conditions of large �pseudo-sound-speed�, ĉcs � 1. This is one of the reasons why this
LBGK scheme suffers from few unphysical effects, such as Galilean invariance problem (Swift
et al., 1995 and Section 4.7.2).
Non-linear deviation. Unphysical viscous stresses due to the non-linear deviation can be sup-

pressed by keeping large �pseudo-sound-speed�, ĉcs � 1,

A
ðn:l:dÞ
i;k

Ki;k
� O

We
ĉc2sdqL

 !
and

A
ðn:l:dÞ
i;k

@jTi;j
� O

1

ĉc2s

 !

E.3. He–Shan–Doolen model

The linear deviation’’ tensor is:

ðE:9Þ

Comparing this unphysical term with capillary and viscous stress tensors:

A
ðl:dÞ
i;j

Ki;j
� O

ð1þ dqLÞ
ĉc2sRe

 !
A

ðl:dÞ
i;j

@jTi;j
� O

dqLÞ
ĉc2sWe

 ! ðE:10Þ

indicates that keeping large ĉcs � 1, this ‘‘artifact’’ can be considered as negligibly small, even for
large density ratios ql=qv � 1, which is significant improvement in comparison to the ‘‘free-
energy-based’’ approach.
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The ‘‘non-linear deviation’’ tensor is given by the following equation:

ðE:11Þ

and includes terms of order � O
1þdqLþdq2

L

ĉc4s ReWe

* +
and � Oðð1þ dqLÞ=ĉc2s ReÞ which allows to make this

unphysical term be suppressed by keeping the limit ĉcs � 1.
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